Теплотехнический расчет онлайн калькулятор снип 1999 разрешение. Пример теплотехнического расчета наружной стены. Показатели теплопередачи для различных материалов

Теплотехнический расчет онлайн калькулятор снип 1999 разрешение. Пример теплотехнического расчета наружной стены. Показатели теплопередачи для различных материалов

Требуется определить толщину утеплителя в трехслойной кирпичной наружной стене в жилом здании, расположенном в г. Омске. Конструкция стены: внутренний слой – кирпичная кладка из обыкновенного глиняного кирпича толщиной 250 мм и плотностью 1800 кг/м 3 , наружный слой – кирпичная кладка из облицовочного кирпича толщиной 120 мм и плотностью 1800 кг/м 3 ; между наружным и внутренними слоями расположен эффективный утеплитель из пенополистирола плотностью 40 кг/м 3 ; наружный и внутренний слои соединяются между собой стеклопластиковыми гибкими связями диаметром 8 мм, расположенными с шагом 0,6 м.

1. Исходные данные

Назначение здания – жилой дом

Район строительства – г. Омск

Расчетная температура внутреннего воздуха t int = плюс 20 0 С

Расчетная температура наружного воздуха t ext = минус 37 0 С

Расчетная влажность внутреннего воздуха – 55%

2. Определение нормируемого сопротивления теплопередаче

Определяется по таблице 4 в зависимости от градусо-суток отопительного периода. Градусо-сутки отопительного периода, D d , °С×сут, определяют по формуле 1, исходя из средней температуры наружного воздуха и продолжительности отопительного периода.

По СНиП 23-01-99* определяем, что в г. Омске средняя температура наружного воздуха отопительного периода равна: t ht = -8,4 0 С , продолжительность отопительного периода z ht = 221 сут. Величина градусо-суток отопительного периода равна:

D d = (t int - t ht ) z ht = (20 + 8,4)×221 = 6276 0 С сут.

Согласно табл. 4. нормируемое сопротивление теплопередаче R reg наружных стен для жилых зданий соответствующее значению D d = 6276 0 С сут равно R reg = a D d + b = 0,00035×6276 + 1,4 = 3,60 м 2 0 С/Вт.

3. Выбор конструктивного решения наружной стены

Конструктивное решение наружной стены предложено в задании и представляет собой трехслойное ограждение с внутренним слоем из кирпичной кладки толщиной 250 мм, наружным слоем из кирпичной кладки толщиной 120 мм, между наружным и внутренним слоем расположен утеплитель из пенополистирола. Наружный и внутренний слой соединяются между собой гибкими связями из стеклопластика диаметром 8 мм, расположенными с шагом 0,6 м.



4. Определение толщины утеплителя

Толщина утеплителя определяется по формуле 7:

d ут = (R reg ./r – 1/a int – d кк /l кк – 1/a ext)× l ут

где R reg . – нормируемое сопротивление теплопередаче, м 2 0 С/Вт; r – коэффициент теплотехнической однородности; a int – коэффициент теплоотдачи внутренней поверхности, Вт/(м 2 ×°С); a ext – коэффициент теплоотдачи наружной поверхности, Вт/(м 2 ×°С); d кк – толщина кирпичной кладки, м ; l кк расчетный коэффициент теплопроводности кирпичной кладки, Вт/(м×°С) ; l ут – расчетный коэффициент теплопроводности утеплителя, Вт/(м×°С) .

Нормируемое сопротивление теплопередаче определено: R reg = 3,60 м 2 0 С/Вт.

Коэффициент теплотехнической однородности для кирпичной трехслойной стены со стеклопластиковыми гибкими связями составляет около r=0,995 , и в расчетах может не учитываться (для информации – если применили стальные гибкие связи, то коэффициент теплотехнической однородности может достигать 0,6-0,7) .

Коэффициент теплоотдачи внутренней поверхности определяется по табл. 7 a int = 8,7 Вт/(м 2 ×°С).

Коэффициент теплоотдачи наружной поверхности принимается по таблице 8 a е xt = 23 Вт/(м 2 ×°С).

Суммарная толщина кирпичной кладки составляет 370 мм или 0,37 м.

Расчетные коэффициенты теплопроводности используемых материалов определяются в зависимости от условий эксплуатации (А или Б). Условия эксплуатации определяются в следующей последовательности:

По табл. 1 определяем влажностный режим помещений: так как расчетная температура внутреннего воздуха +20 0 С, расчетная влажность 55%, влажностный режим помещений – нормальный;

По приложению В (карта РФ) определяем, что г. Омск расположен в сухой зоне;

По табл. 2 , в зависимости от зоны влажности и влажностного режима помещений, определяем, что условия эксплуатации ограждающих конструкций – А .

По прил. Д определяем коэффициенты теплопроводности для условий эксплуатации А: для пенополистирола ГОСТ 15588-86 плотностью 40 кг/м 3 l ут = 0,041 Вт/(м×°С) ; для кирпичной кладки из глиняного обыкновенного кирпича на цементно-песчаном растворе плотностью 1800 кг/м 3 l кк = 0,7 Вт/(м×°С) .

Подставим все определенные значения в формулу 7 и рассчитываем минимальную толщину утеплителя из пенополистирола:

d ут = (3,60 – 1/8,7 – 0,37/0,7 – 1/23)× 0,041 = 0,1194 м

Округляем полученное значение в большую сторону с точностью до 0,01 м: d ут = 0,12 м. Выполняем проверочный расчет по формуле 5:

R 0 = (1/a i + d кк /l кк + d ут /l ут + 1/a e)

R 0 = (1/8,7 + 0,37/0,7 + 0,12/0,041 + 1/23) = 3,61 м 2 0 С/Вт

5. Ограничение температуры и конденсации влаги на внутренней поверхности ограждающей конструкции

Δt o , °С, между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции не должен превышать нормируемых величин Δt n , °С, установленных в таблице 5 , и определен следующим образом

Δt o = n(t int t ext )/( R 0 a int) = 1(20+37)/(3,61 х 8,7) = 1,8 0 С т.е. меньше, чем Δt n , = 4,0 0 С, определенное по таблице 5 .

Вывод: т олщина утеплителя из пенополистирола в трехслойной кирпичной стене составляет 120 мм. При этом сопротивление теплопередаче наружной стены R 0 = 3,61 м 2 0 С/Вт , что больше нормируемого сопротивления теплопередаче R reg . = 3,60 м 2 0 С/Вт на 0,01м 2 0 С/Вт. Расчетный температурный перепад Δt o , °С, между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции не превышает нормативное значение Δt n , .

Пример теплотехнический расчета светопрозрачных ограждающих конструкций

Светопрозрачные ограждающие конструкции (окна) подбирают по следующей методике.

Нормируемое сопротивление теплопередаче R reg определяется по таблице 4 СНиП 23-02-2003 (колонка 6) в зависимости от градусо-суток отопительного периода D d . При этом тип здания и D d принимают как в предыдущем примере теплотехнического расчета светонепрозрачных ограждающих конструкций. В нашем случае D d = 6276 0 С сут, тогда для окна жилого дома R reg = a D d + b = 0,00005×6276 + 0,3 = 0,61 м 2 0 С/Вт.

Выбор светопрозрачных конструкций осуществляется по значению приведенного сопротивления теплопередаче R o r , полученному в результате сертификационных испытаний или по приложению Л Свода правил . Если приведенное сопротивление теплопередаче выбранной светопрозрачной конструкции R o r , больше или равно R reg , то эта конструкция удовлетворяет требованиям норм.

Вывод: для жилого дома в г. Омске принимаем окна в ПВХ-переплетах с двухкамерными стеклопакетами из стекла с твердым селективным покрытием и заполнением аргоном межстекольного пространства у которых R о r = 0,65 м 2 0 С/Вт больше R reg = 0,61 м 2 0 С/Вт.

ЛИТЕРАТУРА

  1. СНиП 23-02-2003. Тепловая защита зданий.
  2. СП 23-101-2004. Проектирование тепловой защиты.
  3. СНиП 23-01-99*. Строительная климатология.
  4. СНиП 31-01-2003. Здания жилые многоквартирные.
  5. СНиП 2.08.02-89 * . Общественные здания и сооружения.

Чтобы определить, какой толщины возводить стену при постройке дома, нужно научиться рассчитать теплопроводность стен. Этот показатель зависит от используемых строительных материалов, климатических условий.

Нормы толщины стен в южных и северных регионах будут различаться. Если не сделать расчет до начала строительства, то может оказаться так, что в доме зимой будет холодно и сыро, а летом слишком влажно.

Для чего нужен расчет


Толщина стен в южных и северных широтах должна отличаться

Чтобы сэкономить на отоплении и способствовать созданию здорового микроклимата в помещении, нужно правильно и утеплительных материалов, которые будем использовать при строительстве. По закону физики, когда на улице холодно, а в помещении тепло, то через стену и кровлю тепловая энергия выходит наружу.

  • зимой стены будут промерзать;
  • на обогрев помещения будут затрачиваться значительные средства;
  • сместиться , что приведет к образованию конденсата и влажности в помещении, заведется плесень;
  • летом в доме будет так же жарко, как и под палящим солнцем.

Чтобы избежать этих неприятностей, нужно перед началом строительства просчитать показатели теплопроводности материала и определиться, какой толщины возводить стену, и каким теплосберегающим материалом ее утеплять.

От чего зависит теплопроводность


Проводимость тепла во многом зависит от материала стен

Проводимость тепла рассчитывают исходя из количества тепловой энергии, проходящей через материал площадью 1 кв. м. и толщиной 1 м при разнице температур внутри и снаружи в один градус. Испытания проводят в течение 1 часа.

Проводимость тепловой энергии зависит от:

Теплосберегающими считаются материалы с показателем менее 17 ВТ/ (м·°С).

Выполняем расчеты


Сопротивление передаче тепла должно быть больше минимума, указанного в нормативах

По теплопроводности является важным фактором в строительстве. При проектировании зданий архитектор рассчитывает толщину стен, но это стоит дополнительных денег. Чтобы сэкономить, можно разобраться, как рассчитать нужные показатели самостоятельно.

Скорость передачи тепла материалом зависит от компонентов, входящих в его состав. Сопротивление передачи тепла должно быть больше минимального значения, указанного в нормативном документе «Тепловая изоляция зданий».

Рассмотрим, как рассчитать толщину стены в зависимости от применяемых в строительстве материалов.

Формула расчета:

R=δ/ λ (м2·°С/Вт), где:

δ это толщина материала, используемого для строительства стены;

λ показатель удельной теплопроводности, рассчитывается в (м2·°С/Вт).

Когда приобретаете стройматериалы, в паспорте на них обязательно должен быть указан коэффициент теплопроводности.

Значения параметров для жилых домов указаны в СНиП II-3-79 и СНиП 23-02-2003.

Допустимые значения в зависимости от региона

Минимально допустимое значение проводимости тепла для различных регионов указано в таблице:


У каждого материала есть свой показатель проводимости тепла. Чем он выше, тем больше тепла пропускает через себя этот материал.

Показатели теплопередачи для различных материалов

Величины проводимости тепла материалами и их плотность указаны в таблице:

Теплопроводность строительных материалов зависит от их плотности и влажности. Одни и те же материалы, изготовленные разными производителями, могут отличаться по свойствам, поэтому коэффициент нужно смотреть в инструкции к ним.

Расчет многослойной конструкции


При расчете многослойной конструкции суммируйте показатели теплосопротивляемости всех материалов

Если стену будем строить из различных материалов, допустим, минеральная вата, штукатурка, рассчитывать величины следует для каждого отдельного материала. Зачем полученные числа суммировать.

В этом случае стоит работать по формуле:

Rобщ= R1+ R2+…+ Rn+ Ra, где:

R1-Rn- термическое сопротивление слоев разных материалов;

Ra.l- термосопротивление закрытой воздушной прослойки. Величины можно узнать в таблице 7 п. 9 в СП 23-101-2004. Прослойка воздуха не всегда предусмотрена при постройке стен. Подробнее о расчетах смотрите в этом видео:

На основании этих подсчетов можно сделать вывод о том, можно ли применять выбранные стройматериалы, и какой они должны быть толщины.

Последовательность действий

Первым делом, нужно выбрать строительные материалы, которые будете использовать для постройки дома. После этого рассчитываем термическое сопротивление стены по описанной выше схеме. Полученные величины следует сравнивать с данными таблиц. Если они совпадают или оказываются выше, хорошо.

Если величина ниже, чем в таблице, тогда нужно увеличить или стены, и снова выполнить подсчет. Если в конструкции присутствует воздушная прослойка, которая вентилируется наружным воздухом, тогда в учет не следует брать слои, находящиеся между воздушной камерой и улицей.

Как выполнить подсчеты на онлайн калькуляторе

Чтобы получить нужные величины, стоит ввести в онлайн калькулятор регион, в котором будет эксплуатироваться постройка, выбранный материал и предполагаемую толщину стен.

В сервис занесены сведения по каждой отдельной климатической зоне:

  • t воздуха;
  • средняя температура в отопительный сезон;
  • длительность отопительного сезона;
  • влажность воздуха.

Температура и влажность внутри помещения — одинаковы для каждого региона

Сведения, одинаковые для всех регионов:

  • температура и влажность воздуха внутри помещения;
  • коэффициенты теплоотдачи внутренних, наружных поверхностей;
  • перепад температур.

Чтобы дом был теплым, и в нем сохранялся здоровый микроклимат, при выполнении строительных работ нужно обязательно выполнять расчет теплопроводности материалов стены. Это несложно сделать самостоятельно или воспользовавшись онлайн калькулятором в интернете. Подробнее о том, как пользоваться калькулятором, смотрите в этом видео:

Для гарантировано точного определения толщины стен можно обратиться в строительную компанию. Ее специалисты выполнят все необходимые расчеты согласно требованиям нормативных документов.

Давным-давно здания и сооружения строились, не задумываясь о том, какими теплопроводными качествами обладают ограждающие конструкции. Другими словами, стены делались просто толстыми. И если вам когда-нибудь случалось быть в старых купеческих домах, то вы могли заметить, что наружные стены этих домов выполнены из керамического кирпича, толщина которых составляет порядка 1,5 метров. Такая толщина кирпичной стены обеспечивала и обеспечивает до сих пор вполне комфортное пребывание людей в этих домах даже в самые лютые морозы.

В настоящее же время все изменилось. И сейчас экономически не выгодно делать стены такими толстыми. Поэтому были придуманы материалы, которые могут ее уменьшить. Одни из них: утеплители и газосиликатные блоки. Благодаря этим материалам, например, толщина кирпичной кладки может быть снижена до 250 мм.

Теперь стены и перекрытия чаще всего делают 2-х или 3-х слойными, одним слоем из которых является материал с хорошими теплоизоляционными свойствами. А для того, чтобы определить оптимальную толщину этого материала, проводится теплотехнический расчет и определяется точка росы.

Как производится расчет по определению точки росы вы можете ознакомиться на следующей странице. Здесь же будет рассмотрен теплотехнический расчет на примере.

Необходимые нормативные документы

Для расчета потребуются два СНиПа, один СП, один ГОСТ и одно пособие:

  • СНиП 23-02-2003 (СП 50.13330.2012). "Тепловая защита зданий". Актуализированная редакция от 2012 года .
  • СНиП 23-01-99* (СП 131.13330.2012). "Строительная климатология". Актуализированная редакция от 2012 года .
  • СП 23-101-2004. "Проектирование тепловой защиты зданий" .
  • ГОСТ 30494-96 (заменен на ГОСТ 30494-2011 с 2011 года). "Здания жилые и общественные. Параметры микроклимата в помещениях" .
  • Пособие. Е.Г. Малявина "Теплопотери здания. Справочное пособие" .

Рассчитываемые параметры

В процессе выполнения теплотехнического расчета определяют:

  • теплотехнические характеристики строительных материалов ограждающих конструкций;
  • приведённое сопротивление теплопередачи;
  • соответствие этого приведённого сопротивления нормативному значению.

Пример. Теплотехнический расчет трехслойной стены без воздушной прослойки

Исходные данные

1. Климат местности и микроклимат помещения

Район строительства: г. Нижний Новгород.

Назначение здания: жилое .

Расчетная относительная влажность внутреннего воздуха из условия не выпадения конденсата на внутренних поверхностях наружных ограждений равна - 55% (СНиП 23-02-2003 п.4.3. табл.1 для нормального влажностного режима).

Оптимальная температура воздуха в жилой комнате в холодный период года t int = 20°С (ГОСТ 30494-96 табл.1).

Расчетная температура наружного воздуха t ext , определяемая по температуре наиболее холодной пятидневки обеспеченностью 0,92 = -31°С (СНиП 23-01-99 табл. 1 столбец 5);

Продолжительность отопительного периода со средней суточной температурой наружного воздуха 8°С равна z ht = 215 сут (СНиП 23-01-99 табл. 1 столбец 11);

Средняя температура наружного воздуха за отопительный период t ht = -4,1°С (СНиП 23-01-99 табл. 1 столбец 12).

2. Конструкция стены

Стена состоит из следующих слоев:

  • Кирпич декоративный (бессер) толщиной 90 мм;
  • утеплитель (минераловатная плита), на рисунке его толщина обозначена знаком "Х", так как она будет найдена в процессе расчета;
  • силикатный кирпич толщиной 250 мм;
  • штукатурка (сложный раствор), дополнительный слой для получения более объективной картины, так как его влияние минимально, но есть.

3. Теплофизические характеристики материалов

Значения характеристик материалов сведены в таблицу.


Примечание (*): Данные характеристики можно также найти у производителей теплоизоляционных материалов.

Расчет

4. Определение толщины утеплителя

Для расчета толщины теплоизоляционного слоя необходимо определить сопротивление теплопередачи ограждающей конструкции исходя из требований санитарных норм и энергосбережения.

4.1. Определение нормы тепловой защиты по условию энергосбережения

Определение градусо-суток отопительного периода по п.5.3 СНиП 23-02-2003:

D d = ( t int - t ht ) z ht = (20 + 4,1)215 = 5182°С×сут

Примечание: также градусо-сутки имеют обозначение - ГСОП.

Нормативное значение приведенного сопротивления теплопередаче следует принимать не менее нормируемых значений, определяемых по СНИП 23-02-2003 (табл.4) в зависимости от градусо-суток района строительства:

R req = a×D d + b = 0,00035 × 5182 + 1,4 = 3,214м 2 × °С/Вт ,

где: Dd - градусо-сутки отопительного периода в Нижнем Новгороде,

a и b - коэффициенты, принимаемые по таблице 4 (если СНиП 23-02-2003) или по таблице 3 (если СП 50.13330.2012) для стен жилого здания (столбец 3).

4.1. Определение нормы тепловой защиты по условию санитарии

В нашем случае рассматривается в качестве примера, так как данный показатель рассчитывается для производственных зданий с избытками явной теплоты более 23 Вт/м 3 и зданий, предназначенных для сезонной эксплуатации (осенью или весной), а также зданий с расчетной температурой внутреннего воздуха 12 °С и ниже приведенное сопротивление теплопередаче ограждающих конструкций (за исключением светопрозрачных).

Определение нормативного (максимально допустимого) сопротивления теплопередаче по условию санитарии (формула 3 СНиП 23-02-2003):

где: n = 1 - коэффициент, принятый по таблице 6 для наружной стены;

t int = 20°С - значение из исходных данных;

t ext = -31°С - значение из исходных данных;

Δt n = 4°С - нормируемый температурный перепад между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции, принимается по таблице 5 в данном случае для наружных стен жилых зданий;

α int = 8,7 Вт/(м 2 ×°С) - коэффициент теплопередачи внутренней поверхности ограждающей конструкции, принимается по таблице 7 для наружных стен.

4.3. Норма тепловой защиты

Из приведенных выше вычислений за требуемое сопротивление теплопередачи выбираем R req из условия энергосбережения и обозначаем его теперь R тр0 =3,214м 2 × °С/Вт .

5. Определение толщины утеплителя

Для каждого слоя заданной стены необходимо рассчитать термическое сопротивление по формуле:

где: δi- толщина слоя, мм;

λ i - расчетный коэффициент теплопроводности материала слоя Вт/(м × °С).

1 слой (декоративный кирпич): R 1 = 0,09/0,96 = 0,094 м 2 × °С/Вт .

3 слой (силикатный кирпич): R 3 = 0,25/0,87 = 0,287 м 2 × °С/Вт .

4 слой (штукатурка): R 4 = 0,02/0,87 = 0,023 м 2 × °С/Вт .

Определение минимально допустимого (требуемого) термического сопротивления теплоизоляционного материала (формула 5.6 Е.Г. Малявина "Теплопотери здания. Справочное пособие"):

где: R int = 1/α int = 1/8,7 - сопротивление теплообмену на внутренней поверхности;

R ext = 1/α ext = 1/23 - сопротивление теплообмену на наружной поверхности, α ext принимается по таблице 14 для наружных стен;

ΣR i = 0,094 + 0,287 + 0,023 - сумма термических сопротивлений всех слоев стены без слоя утеплителя, определенных с учетом коэффициентов теплопроводности материалов, принятых по графе А или Б (столбцы 8 и 9 таблицы Д1 СП 23-101-2004) в соответствии с влажностными условиями эксплуатации стены, м 2 ·°С/Вт

Толщина утеплителя равна (формула 5,7 ):

где: λ ут - коэффициент теплопроводности материала утеплителя, Вт/(м·°С).

Определение термического сопротивления стены из условия, что общая толщина утеплителя будет 250 мм (формула 5.8 ):

где: ΣR т,i - сумма термических сопротивлений всех слоев ограждения, в том числе и слоя утеплителя, принятой конструктивной толщины, м 2 ·°С/Вт.

Из полученного результата можно сделать вывод, что

R 0 = 3,503м 2 × °С/Вт > R тр0 = 3,214м 2 × °С/Вт → следовательно, толщина утеплителя подобрана правильно .

Влияние воздушной прослойки

В случае, когда в трехслойной кладке в качестве утеплителя применяются минеральная вата, стекловата или другой плитный утеплитель, необходимо устройство воздушной вентилируемой прослойки между наружной кладкой и утеплителем. Толщина этой прослойки должна составлять не менее 10 мм, а желательно 20-40 мм. Она необходима для того, чтобы осушать утеплитель, который намокает от конденсата.

Данная воздушная прослойка является не замкнутым пространством, поэтому в случае ее наличия в расчете необходимо учитывать требования п.9.1.2 СП 23-101-2004, а именно:

а) слои конструкции, расположенные между воздушной прослойкой и наружной поверхностью (в нашем случае - это декоративный кирпич (бессер)), в теплотехническом расчете не учитываются;

б) на поверхности конструкции, обращенной в сторону вентилируемой наружным воздухом прослойки, следует принимать коэффициент теплоотдачи α ext = 10,8 Вт/(м°С).

Примечание: влияние воздушной прослойки учитывается, например, при теплотехническом расчете пластиковых стеклопакетов.

Стены зданий, защищают нас от ветра, осадков и часто служат несущими конструкциями для крыши. И все-таки главной функцией стен, как ограждающих конструкций, является защита человека от не комфортных температур (в основном низких) воздуха окружающего пространства.

Теплотехнический расчет стены определяет необходимые толщины слоев примененных материалов, обеспечивающие тепловую изоляцию помещений с точки зрения обеспечения комфортных санитарно-гигиенических условий для нахождения человека в здании и требований законодательства по энергосбережению.

Чем сильнее утеплены стены, тем меньше будущие эксплуатационные затраты на отопление здания, но при этом больше затраты на приобретение материалов при строительстве. До какой степени разумно утеплять ограждающие конструкции зависит от предполагаемого срока эксплуатации здания, целей, преследуемых инвестором строительства, и считается на практике в каждом случае индивидуально.

Санитарно-гигиенические требования определяют минимально допустимые сопротивления теплопередаче сечения стен, способные обеспечить комфорт в помещении. Эти требования следует обязательно выполнить при проектировании и строительстве! Обеспечение требований по энергосбережению позволит вашему проекту не только пройти экспертизу и потребует дополнительных разовых затрат при строительстве, но и обеспечит сокращение дальнейших затрат на отопление при эксплуатации.

Теплотехнический расчет в Excel многослойной стены.

Включаем MS Excel и начинаем рассмотрение примера теплотехнического расчета стены здания, строящегося в регионе — г. Москва.

Перед началом работы скачайте: СП 23-101-2004, СП 131. 13330.2012 и СП 50.13330.2012. Все перечисленные Своды Правил находятся в свободном доступе в Интернете.

В расчетном файле Excel в примечаниях к ячейкам со значениями параметров представлена информация, откуда следует брать эти значения, причем не только указаны номера документов, но и, зачастую, номера таблиц и даже столбцов.

Задавшись размерами и материалами слоев стены, мы проверим её на соответствие санитарно-гигиеническим нормам и нормам энергосбережения, а также вычислим расчетные температуры на границах слоев.

Исходные данные:

1…7. Ориентируясь на ссылки в примечаниях к ячейкам D4-D10, заполняем первую часть таблицы исходными данными для вашего региона строительства.

8…15. Во вторую часть исходных данных в ячейки D12-D19 вносим параметры слоев наружной стены – толщины и коэффициенты теплопроводности.

Значения коэффициентов теплопроводности материалов вы можете запросить у продавцов, найти по ссылкам в примечаниях к ячейкам D13, D15, D17, D19 или просто поиском в Сети.

В рассматриваемом примере:

первый слой — листы гипсовые обшивочные (сухая штукатурка) с плотностью 1050 кг/м 3 ;

второй слой — кирпичная кладка из сплошного глиняного обыкновенного кирпича (1800 кг/м 3) на цементно-шлаковом растворе;

третий слой — плиты минераловатные из каменного волокна (25-50 кг/м3);

четвертый слой — полимерцементная штукатурка с сеткой из стекловолокна.

Результаты:

Теплотехнический расчет стены будем выполнять, основываясь на предположении, что примененные в конструкции материалы сохраняют теплотехническую однородность в направлении распространения теплового потока.

Расчет ведется по ниже представленным формулам:

16. ГСОП =( t вр - t н ср )* Z

17. R 0 э тр =0,00035* ГСОП+1,4

Формула применима для теплотехнического расчета стен жилых зданий, детских и лечебно-профилактических учреждений. Для зданий иного назначения коэффициенты «0,00035» и «1,4» в формуле следует выбрать иными согласно Таблице 3 СП 50.13330.2012.

18. R тр =( t вр - t нр )/( Δ t в * α в )

19. R 0 =1/ α в + δ 1 / λ 1 + δ 2 / λ 2 + δ 3 / λ 3 + δ 4 / λ 4 +1/ α н

Должны выполняться условия: R 0 > R тр и R 0 > R тр .

Если не выполняется первое условие, то ячейка D24 автоматически будет залита красным цветом, сигнализируя пользователю о недопустимости применения выбранной конструкции стены. Если не выполняется только второе условие, то ячейка D24 окрасится розовым цветом. Когда расчетное сопротивление теплопередачи больше нормативных значений, ячейка D24 окрашена в светло-желтый цвет.

20. t 1 = t вр — (t вр t нр )/ R 0 *1/α в

21. t 2 = t вр — (t вр t нр )/ R 0 *(1/α в + δ 1 /λ 1 )

22. t 3 = t вр — (t вр t нр )/ R 0 *(1/α в + δ 1 /λ 1 + δ 2 /λ 2 )

23. t 4 = t вр — (t вр t нр )/ R 0 *(1/α в + δ 1 /λ 1 + δ 2 /λ 2 3 /λ 3 )

24. t 5 = t вр — (t вр t нр )/ R 0 *(1/α в + δ 1 /λ 1 + δ 2 /λ 2 3 /λ 3 + δ 4 /λ 4 )

Теплотехнический расчет стены в Excel завершен.

Важное замечание.

Окружающий нас воздух содержит внутри себя воду. Чем выше температура воздуха, тем большее количество влаги он способен удерживать.

При 0˚С и 100% относительной влажности промозглый воздух ноября в наших широтах содержит в одном кубическом метре менее 5 граммов воды. В то же время раскаленный воздух в пустыне Сахара при +40˚С и всего 30% относительной влажности, удивительно, но удерживает внутри себя в 3 раза больше воды — более 15 г/м3.

Остывая и становясь холоднее, воздух не может удерживать внутри себя то количество влаги, что мог в более нагретом состоянии. В результате воздух выбрасывает из себя на прохладные внутренние поверхности стен капли влаги. Чтобы этого не происходило внутри помещений, следует при проектировании сечения стены обеспечить невозможность выпадения росы на внутренних поверхностях стен.

Так как средняя относительная влажность воздуха жилых помещений составляет 50…60%, то точка росы при температуре воздуха +22˚С составляет +11…14˚С. В нашем примере температура внутренней поверхности стены +20,4˚С обеспечивает невозможность образования росы.

Но роса может при достаточной гигроскопичности материалов образовываться внутри слоев стены и, особенно, на границах слоев! Замерзая, вода расширяется и разрушает материалы стен.

В рассмотренном выше примере точка с температурой 0˚С находится внутри слоя утеплителя и достаточно близко к наружной поверхности стены. В этой точке на схеме в начале статьи, отмеченной желтым цветом, температура меняет свое значение с положительного на отрицательное. Получается, что кирпичная кладка никогда в своей жизни не будет находиться под воздействием отрицательных температур. Это будет способствовать обеспечению долговечности стен здания.

Если мы поменяем в примере местами второй и третий слои – утеплим стену изнутри, то получим не одну, а две границы слоев в области отрицательных температур и наполовину промороженную кирпичную кладку. Убедитесь в этом самостоятельно, выполнив теплотехнический расчет стены. Напрашивающиеся выводы очевидны.

Уважающих труд автора прошу скачать файл с расчетом после подписки на анонсы статей в окне, размещенном наверху страницы или в окне в конце статьи!

Теплотехнический расчет позволяет определить минимальную толщину ограждающих конструкций для того, чтобы не было случаев перегрева или промерзания в процессе эксплуатации строения.

Ограждающие конструктивные элементы отапливаемых общественных и жилых зданий, за исключением требований устойчивости и прочности, долговечности и огнестойкости, экономичности и архитектурного оформления, должны отвечать в первую очередь теплотехническим нормам. Выбирают ограждающие элементы в зависимости от конструктивного решения, климатологических характеристик района застройки, физических свойств, влажно-температурного режима в здании, а также в соответствии с требованиями сопротивления теплопередаче, воздухонипроницанию и паропроницанию.

В чем смысл расчета?

  1. Если во время расчета стоимости будущего строения учитывать лишь прочностные характеристики, то, естественно, стоимость будет меньше. Однако это видимая экономия: впоследствии на обогрев помещения уйдет значительно больше средств.
  2. Грамотно подобранные материалы создадут в помещении оптимальный микроклимат.
  3. При планировке системы отопления также необходим теплотехнический расчет. Чтобы система была рентабельной и эффективной, необходимо иметь понятие о реальных возможностях здания.

Теплотехнические требования

Важно, чтобы наружные конструкции соответствовали следующим теплотехническим требованиям:

  • Имели достаточные теплозащитные свойства. Другими словами, нельзя допускать в летнее время перегрева помещений, а зимой - излишних потерь тепла.
  • Разность температур воздуха внутренних элементов ограждений и помещений не должна быть выше нормативного значения. В противном случае может произойти чрезмерное охлаждение тела человека излучением тепла на данные поверхности и конденсация влаги внутреннего воздушного потока на ограждающих конструкциях.
  • В случае изменения теплового потока температурные колебания внутри помещения должны быть минимальные. Данное свойство называется теплоустойчивостью.
  • Важно, чтобы воздухонепроницаемость ограждений не вызывала сильного охлаждения помещений и не ухудшала теплозащитные свойства конструкций.
  • Ограждения должны иметь нормальный влажностный режим. Так как переувлажнение ограждений увеличивает потери тепла, вызывает в помещении сырость, уменьшает долговечность конструкций.

Чтобы конструкции соответствовали вышеперечисленным требованиям, выполняют теплотехнический расчет, а также рассчитывают теплоустойчивость, паропроницаемость, воздухопроницаемость и влагопередачу по требованиям нормативной документации.

Теплотехнические качества

От теплотехнических характеристик наружных конструктивных элементов строений зависит:

  • Влажностный режим элементов конструкции.
  • Температура внутренних конструкций, которая обеспечивает отсутствие на них конденсата.
  • Постоянная влажность и температура в помещениях, как в холодное, так и в теплое время года.
  • Количество тепла, которое теряется зданием в зимний период времени.

Итак, исходя из всего перечисленного выше, теплотехнический расчет конструкций считается немаловажным этапом в процессе проектирования зданий и сооружений, как гражданских, так и промышленных. Проектирование начинается с выбора конструкций - их толщины и последовательности слоев.

Задачи теплотехнического расчета

Итак, теплотехнический расчет ограждающих конструктивных элементов осуществляется с целью:

  1. Соответствия конструкций современным требованиям по тепловой защите зданий и сооружений.
  2. Обеспечения во внутренних помещениях комфортного микроклимата.
  3. Обеспечения оптимальной тепловой защиты ограждений.

Основные параметры для расчета

Чтобы определить расход тепла на отопление, а также произвести теплотехнический расчет здания, необходимо учесть множество параметров, зависящих от следующих характеристик:

  • Назначение и тип здания.
  • Географическое расположение строения.
  • Ориентация стен по сторонам света.
  • Размеры конструкций (объем, площадь, этажность).
  • Тип и размеры окон и дверей.
  • Характеристики отопительной системы.
  • Количество людей, находящихся в здании одновременно.
  • Материал стен, пола и перекрытия последнего этажа.
  • Наличие системы горячего водоснабжения.
  • Тип вентиляционных систем.
  • Другие конструктивные особенности строения.

Теплотехнический расчет: программа

На сегодняшний день разработано множество программ, позволяющих произвести данный расчет. Как правило, расчет осуществляется на основании методики, изложенной в нормативно-технической документации.

Данные программы позволяют вычислить следующее:

  • Термическое сопротивление.
  • Потери тепла через конструкции (потолок, пол, дверные и оконные проемы, а также стены).
  • Количество тепла, требуемого для нагрева инфильтрирующего воздуха.
  • Подбор секционных (биметаллических, чугунных, алюминиевых) радиаторов.
  • Подбор панельных стальных радиаторов.

Теплотехнический расчет: пример расчета для наружных стен

Для расчета необходимо определить следующие основные параметры:

  • t в = 20°C - это температура воздушного потока внутри здания, которая принимается для расчета ограждений по минимальным значениям наиболее оптимальной температуры соответствующего здания и сооружения. Принимается она в соответствии с ГОСТом 30494-96.

  • По требованиям ГОСТа 30494-96 влажность в помещении должна составлять 60%, в результате в помещении будет обеспечен нормальный влажностный режим.
  • В соответствии с приложением B СНиПа 23-02-2003, зона влажности сухая, значит, условия эксплуатации ограждений - A.
  • t н = -34 °C - это температура наружного воздушного потока в зимний период времени, которая принимается по СНиП исходя из максимально холодной пятидневки, имеющей обеспеченность 0,92.
  • Z от.пер = 220 суток - это длительность отопительного периода, которая принимается по СНиПу, при этом среднесуточная температура окружающей среды ≤ 8 °C.
  • T от.пер. = -5,9 °C - это температура окружающей среды (средняя) в отопительный период, которая принимается по СНиП, при суточной температуре окружающей среды ≤ 8 °C.

Исходные данные

В таком случае теплотехнический расчет стены будет производиться с целью определения оптимальной толщины панелей и теплоизоляционного материала для них. В качестве наружных стен будут использоваться сэндвич-панели (ТУ 5284-001-48263176-2003).

Комфортные условия

Рассмотрим, как выполняется теплотехнический расчет наружной стены. Для начала следует вычислить требуемое сопротивление теплопередачи, ориентируясь на комфортные и санитарно-гигиенические условия:

R 0 тр = (n × (t в - t н)) : (Δt н × α в), где

n = 1 - это коэффициент, который зависит от положения наружных конструктивных элементов по отношению к наружному воздуху. Его следует принимать по данным СНиПа 23-02-2003 из таблицы 6.

Δt н = 4,5 °C - это нормируемый перепад температуры внутренней поверхности конструкции и внутреннего воздуха. Принимается по данным СНиПа из таблицы 5.

α в = 8,7 Вт/м 2 °C - это теплопередача внутренних ограждающих конструкций. Данные берутся из таблицы 5, по СНиПу.

Подставляем данные в формулу и получаем:

R 0 тр = (1 × (20 - (-34)) : (4,5 × 8,7) = 1,379 м 2 °C/Вт.

Условия энергосбережения

Выполняя теплотехнический расчет стены, исходя из условий энергосбережения, необходимо вычислить требуемое сопротивление теплопередачи конструкций. Оно определяется по ГСОП (градусо-сутки отопительного периода, °C) по следующей формуле:

ГСОП = (t в - t от.пер.) × Z от.пер, где

t в - это температура воздушного потока внутри здания, °C.

Z от.пер. и t от.пер. - это продолжительность (сут.) и температура (°C) периода, имеющего среднесуточную температуру воздуха ≤ 8 °C.

Таким образом:

ГСОП = (20 - (-5,9)) ×220 = 5698.

Исходя из условий энергосбережения, определяем R 0 тр методом интерполяции по СНиПу из таблицы 4:

R 0 тр = 2,4 + (3,0 - 2,4)×(5698 - 4000)) / (6000 - 4000)) = 2,909 (м 2 °C/Вт)

R 0 = 1/ α в + R 1 + 1/ α н, где

d - это толщина теплоизоляции, м.

l = 0,042 Вт/м°C - это теплопроводность минераловатной плиты.

α н = 23 Вт/м 2 °C - это теплоотдача наружных конструктивных элементов, принимаемый по СНиПу.

R 0 = 1/8,7 + d/0,042+1/23 = 0,158 + d/0,042.

Толщина утеплителя

Толщина теплоизоляционного материала определяется исходя из того, что R 0 = R 0 тр, при этом R 0 тр берется при условиях энергосбережения, таким образом:

2,909 = 0,158 + d/0,042, откуда d = 0,116 м.

Подбираем марку сэндвич-панелей по каталогу с оптимальной толщиной теплоизоляционного материала: ДП 120, при этом общая толщина панели должна составлять 120 мм. Аналогичным образом производится теплотехнический расчет здания в целом.

Необходимость выполнения расчета

Запроектированные на основании теплотехнического расчета, выполненного грамотно, ограждающие конструкции позволяют сократить затраты на отопление, стоимость которого регулярно увеличиваются. К тому же сбережение тепла считается немаловажной экологической задачей, ведь это напрямую связано с уменьшением потребления топлива, что приводит к снижению воздействия негативных факторов на окружающую среду.

Кроме того, стоит помнить о том, что неправильно выполненная теплоизоляция способна привести к переувлажнению конструкций, что в результате приведет к образованию плесени на поверхности стен. Образование плесени, в свою очередь, приведет к порче внутренней отделки (отслаивание обоев и краски, разрушение штукатурного слоя). В особо запущенных случаях может понадобиться радикальное вмешательство.

Очень часто строительные компании в своей деятельности стремятся использовать современные технологии и материалы. Только специалисту под силу разобраться в необходимости применения того или иного материала, как отдельно, так и в совокупности с другими. Именно теплотехнический расчет поможет определиться с наиболее оптимальными решениями, которые обеспечат долговечность конструктивных элементов и минимальные финансовые затраты.



просмотров