Расчет тепловых потерь неизолированными трубопроводами при надземной прокладке. Как произвести расчет тепловых потерь трубопроводов

Расчет тепловых потерь неизолированными трубопроводами при надземной прокладке. Как произвести расчет тепловых потерь трубопроводов

Многие, строя загородный дом, забывают о приближении зимних холодов, из-за чего расчет теплопотерь здания делают в спешке, и в итоге отопление не создает комфортный микроклимат в помещениях. А ведь сделать дом теплым не сложно, нужно лишь учесть ряд нюансов.

На чем основывается расчет теплопотерь здания

Таким свойством, как теплопроводность, обладает любой материал, различается лишь уровень термического сопротивления, то есть пропускная способность. Из любого дома, даже с устроенной по всем правилам термоизоляцией, тепло уходит через окна, двери, стены, пол, потолок (крышу), а также через вентиляцию . При разнице внешней и внутренней температур обязательно возникает так называемая «точка росы», со средним значением. И только от микроклимата в помещениях, материала и толщины стен, а также характеристик термоизоляции зависит, где окажется эта точка: внутри, снаружи или непосредственно в стене, а также какая в ней будет температура.

Если ответственно подходить к задаче и выполнять расчет теплопотерь здания по всем правилам, это займет у вас немало часов и придется составить множество формул, вычисления займут целую тетрадь. Поэтому определим интересующие нас показатели упрощенным методом, либо обратившись за помощью к СНиП и ГОСТам. И, поскольку решено делать подсчеты не слишком углубленно, оставим в стороне определение среднегодовых температуры и влажности по самой холодной пятидневке за несколько лет, как того требуется по СНиП 23-01-99. Просто отметим наиболее морозный день за последний зимний сезон, допустим, это будет -30 о С. Также не будем принимать во внимание среднесезонную скорость ветра, влажность в регионе и длительность отопительного периода.

Калькулятор теплопотерь здания

Укажите размеры и типы стен.
На улице
средняя температура за день
Выберите значение -40°C -30°C -20°C -15°C -10°C -5°C 0°C +5C +10C
Внутри
средняя температура за день
Стены
Только выходящие
на улицу стены!

Добавьте выходящие на улицу стены и укажите, из каких слоёв состоит стена

Комнаты

Добавьте все используемые помещения, даже коридоры, и укажите, из каких слоёв состоят перекрытия

Тепловые потери:
Через стены: - кВт Через окна: - кВт Через верх: - кВт Через низ: - кВт Через вентиляцию: - кВт Итого: -кВт Нажмите на кнопку для расчёта

Распечатать

Однако из чего же складывается микроклимат в жилой комнате? Комфортные условия для жильцов зависят от температуры воздуха t в, его влажности φ в и движения v в, возникающего при наличии вентиляции. И еще один фактор влияет на уровень тепла – радиационное излучение тепла или холода t р, свойственное нагреваемым (охлаждаемым) естественным путем предметам и поверхностям в обстановке. По нему определяется результирующая температура t п, с помощью формулы [t п = (t р + t в)/2]. Все эти показатели для разных помещений можно рассмотреть в приведенной ниже таблице.

Оптимальные параметры микроклимата жилых зданий по ГОСТ 30494-96

Период года Помещение

Температура внутреннего воздуха t в, °С

Результирующая температура t п, °С

Относит. влажность внутреннего воздуха φ в, %

Скорость движения воздуха v в, м/с

Холодный Жилая комната
То же, в районах с t 5 от -31 °С
Кухня
Туалет
Ванная, совмещенный санузел
Помещение для отдыха и учебных занятий
Межквартирный коридор
Вестибюль, лестничная клетка
Кладовая
Теплый Жилая комната

Буквами НН обозначаются ненормируемые параметры.

Делаем теплотехнический расчет стены с учетом всех слоев

Как уже было сказано, каждому материалу свойственно сопротивление теплопередаче, и чем толще стены или перекрытия, тем выше это значение . Однако не стоит забывать и про термоизоляцию, при наличии которой ограждающие помещение поверхности становятся многослойными и намного лучше препятствуют утечке тепла. У каждого слоя свое сопротивление прохождению тепла, и сумма всех этих величин обозначается в формулах как Σ R i (здесь буква i определяет номер слоя).

Поскольку составляющие ограждения помещений материалы с разными свойствами имеют некоторое возмущение температурного режима в своей структуре, высчитывается общее сопротивление теплопередаче. Формула у него следующая: , где R в и R н соответствуют сопротивлению на внутренней и наружной поверхностях ограждения, будь то стена или перекрытие . Однако утеплители вносят в теплотехнический расчет стены коррективы, которые базируются на коэффициенте теплотехнической однородности r , определяемом формулой .

Показатели с цифровыми индексами являются, соответственно, коэффициентами внутренних крепежей и соединения расчетного ограждения с любым другим. Первый, то есть r 1 , отвечает как раз за фиксацию утеплителей. Если коэффициент теплопроводности последних λ = 0,08 Вт/(м·°С), значение r 1 будет большим, если же теплопроводность термоизоляции оценивается как λ = 0,03 Вт/(м·°С), то меньшим.

Значение коэффициента внутренних крепежей уменьшается по мере возрастания толщины слоя утеплителя.

В целом, картина складывается следующая. Допустим, термоизоляция монтируется прямым анкерным креплением на трехслойной ячеистобетонной стене, снаружи облицованной кирпичом. Тогда при слое утеплителя в 100 миллиметров r 1 соответствует 0,78-0,91, толщина в 150 миллиметров дает коэффициент внутреннего крепежа 0,77-0,90, тот же показатель, но в 200 мм, определяет r 1 как 0,75-0,88. Если внутренний слой также из кирпича, то r 1 = 0,78-0,92, а если стены помещения железобетонные, то коэффициент смещается до 0,79-0,93. А вот оконные откосы и вентиляция дают значение r 2 = 0,90-0,95. Все эти данные следует учитывать в дальнейшем.

Некоторые сведения о том, как рассчитать толщину утеплителя

Для того чтобы приступить к расчету термоизоляции, нам необходимо, прежде всего, высчитать R o , затем узнать требуемое термическое сопротивление R req по следующей таблице (сокращенный вариант).

Требуемые значения сопротивления теплопередаче ограждающих конструкций

Здание / помещение

Градусо-сутки отопительного периода D d , °С·сут

Приведенное сопротивление теплопередаче ограждений R req , м 2 ·°С/Вт

стены

покрытия

чердачного перекрытия и перекрытия над холодными подвалами

окна и балконной двери, витрины и витража

1. Жилое, лечебно-профилактическое и детское учреждение, школа, интернат
а
b
2. Общественное, административное, бытовое и другие помещения с влажным или мокрым режимами
а
b

Коэффициенты a и b необходимы для тех случаев, когда значение D d , °С·сут отличается от приведенного в таблице, тогда R req , м 2 ·°С/Вт рассчитывается по формуле R req = a D d + b . Для колонки 6 первой группы зданий существуют поправки: если значение градусо-суток менее 6000 °С·сут, a = 0,000075, а b = 0,15, если тот же показатель в диапазоне 6000-8000 °С·сут, то a = 0,00005, b = 0,3, если же более 8000 °С·сут, то a = 0,000025, а b = 0,5. Когда все данные будут собраны, приступаем к расчету термоизоляции.

Теперь выясним, как рассчитать толщину утеплителя. Здесь придется обратиться к математике, поэтому будьте готовы поработать с формулами. Вот первая из них, по ней определяем требуемое условное сопротивление теплопередаче R o усл. тр = R req /r. Данный параметр нам нужен для определения требуемого сопротивления теплопередачи утеплителя R ут тр = R o усл. тр – (R в + Σ R т. изв + R н), здесь Σ R т. изв является суммой термического сопротивления слоев ограждения без учета теплоизоляции. Находим толщину утеплителя δ ут = R ут тр λ ут (м), причем λ ут берется из таблицы Д.1 СП 23-101-2004 , и округляем полученный результат в большую сторону до конструктивного значения с учетом номенклатуры производителя.

Расчет теплопотерь дома – необходимый этап при проектировании системы отопления. Выполняется по сложным формулам. Некорректно ведет к недостаточной обогреваемости помещения (если показатели теплопотерь занижены) или же к переплатам за систему и за отопление (если показатели завышены).

Расчет теплоснабжения должен быть выполнен на высшем уровне

Исходные данные для расчета теплопотерь дома

Чтобы провести расчет корректно, Вам нужно располагать базовым набором данных. Только с ними возможно работать.

  1. Отапливаемая площадь (потребуется Вам и в дальнейшем для расчета объема обогреваемого воздуха);
  2. План этажей здания (задействуется в т.ч. при определении мест установки отопительных узлов);
  3. Разрез здания (иногда не требуется);
  4. Тип климата местности учитывается при расчете. Узнать можно из СНБ – 2. 04. 02 – 2000 «Строительная климатология». Полученный коэффициент учитывается при расчете;
  5. Географическое положение строения, расположение отапливаемого объема относительно севера, юга, запада и востока;
  6. Стройматериалы, из которых выполнены стены и пол;
  7. Строение ограждающих конструкций (стен, пола). Нужен профиль с перечислением слоев материалов, их расположения и толщины;
  8. каждый вид стройматериала, и т.п.;
  9. Вид и конструкция дверей из помещения, их профиль, разрез;
  10. Материалы, из которых выполнены двери с выяснением удельной плотности каждого, расположение и толщина слоев и коэффициента теплопроводности. Т.е. требуется та же информация, что и для материалов стен;
  11. Расчет тепловой мощности системы отопления невозможен без информации по окнам, при их наличии. Требуется учесть их размеры, геометрию, тип стеклопакета, иногда – материалы. Также может потребоваться профиль и данные, аналогичные дверям;
  12. Данные о крыше: строение, тип, высота, профиль с перечислением типа материалов и толщины, положения слоев. Характеристики стройматериалов – теплопроводность, количество и т.д.;
  13. Высота подоконника. Она считается как расстояние от поверхности верхнего слоя пола (не облицовки, а чистого слоя) до нижней стороны доски;
  14. Присутствие либо отсутствие батарей отопления;
  15. При наличии «теплого пола» – его профиль, стройматериал покрытия над коммуникациями с перечислением толщины слоев, их расположения, коэффициента теплопроводности и др.;
  16. Стройматериал и вид трубопровода.

Определяемые данные для стен жилого дома

Задумайтесь о том, каковы будущие функции помещения на основании этого сделайте вывод о желаемом температурном режиме (так, в складских помещениях температура может быть ниже, чем в тех, где постоянно находится персонал, в оранжереях, на цветочных базах имеются еще более специфические требования к отоплению).

На следующем этапе проводится определение температурного режима помещения. Он проводится путем периодического замера температур. Определяются желаемые температуры, которые нужно поддерживать. Выбирается схема отопления и предполагаемые (либо желаемые) места установки стояков. Определяется источник теплоснабжения.

Когда ведется расчёт теплопотерь, важную роль также играет архитектура здания, в частности, его форма и геометрия. С 2003 года в СНиП учитывается показатель формы строения. Он вычисляется как отношение площади оболочки (стен, пола и потолка) к тому объему, который она окружает. До 2003 года параметр не учитывался, что вело к тому, что энергия существенно перерасходовалась.

Ход работ: вычисления процента допустимых теплопотерь для загородного дома из бруса, бревна, кирпича, панелей

Прежде чем приступать непосредственно к работам, исполнитель проводит некоторые натурные изыскания на объекте. Помещение обследуется и замеряется, учитываются пожелания и информация от заказчика. Этот процесс предполагает определенные действия:

  1. Натурное измерение помещений;
  2. Спецификация их по данным заказчика;
  3. Изучение обогревательной системы при ее наличии;
  4. Идеи по усовершенствованию или исправлению погрешности в отоплении (в имеющейся системе);
  5. Изучение системы подачи горячей воды;
  6. Разработка идей по ее задействованию для обогрева или уменьшения теплопотери (например, с использование оборудования Valtec (Валтек);
  7. Расчет теплопотерь и иные, необходимые для разработки плана системы отопления.

После проведения этих этапов, исполнитель предоставляет необходимую техдокументацию. В нее входит поэтажные планы, профили, где отображен каждый отопительный прибор и общее устройство системы, материалы по специфике и типу используемого оборудования.

Расчеты: откуда наибольшие теплопотери в каркасном утепленном доме и как их снизить с помощью прибора

Наиболее важный процесс в проектировании обогрева – расчеты будущей системы. Ведется расчёт теплопотерь через ограждающие конструкции, определяются дополнительные потери и поступления тепла, определяется необходимое количество обогревательных приборов выбранного типа и т.д. Расчет коэффициента теплопотерь дома должен делать опытный человек.

Уравнение теплового баланса играет важную роль в определении теплопотерь и разработки способов их компенсации. приведена ниже:

V –объем помещения, вычисляемый с учетом площади помещения и высоты потолков. T – разница между внешней и внутренне температурой здания. К – коэффициент потери тепла.

Формула теплового баланса дает не самые точные показатели, потому применяется редко.

Основное значение, которое используется при вычислении – тепловая нагрузка на обогреватели. Для ее определения используются значения потерь тепла и . позволяет рассчитать то количество тепла, которое будет вырабатывать система обогрева, имеет вид:

Теплопотери объема () умножаются на 1.2. Это запасной тепловой коэффициент – константа, помогающая компенсировать некоторые теплопотери, носящие случайный характер (длительное открытие дверей или окон и др.).

Рассчитать потери тепла достаточно сложно. В среднем, различные ограждающие конструкции способствуют потери разного количества энергии. 10 % теряется сквозь крышу, 10% — сквозь пол, фундамент, 40% — стены, по 20% — окна и плохая изоляция, система вентиляции и др. Удельная тепловая характеристика различных материалов неодинакова. Потому в формуле прописаны коэффициенты, позволяющие учесть все нюансы. Таблица ниже показывает значения коэффициентов, необходимые, чтобы провести расчёт количества теплоты.

Формула потерь тепла следующая:

В формуле удельная теплопотеря, равна 100 Ватт на кв. м. Пл – площадь помещения, также участвующая в определении. Теперь может быть применена формула для расчета количества теплоты, необходимое для выделения котлом.

Считайте правильно и будет у вас дома тепло

Пример расчета коэффициента теплопотерь в частном доме: формула успеха

Формула расчёта тепла на отопление помещения легко применима к любому зданию. В качестве примера рассмотрим гипотетическое здание с простым остеклением, деревянными стенами и соотношением окна – пол равным 20%. Он расположен в умеренном климатическом поясе, где минимальная температура снаружи – 25 градусов. Имеет 4 стены, высотой по 3 м. Над отапливаемым помещением находится холодный чердак. Значение коэффициентов выясняется по таблице К1 – 1,27, К2 – 1,25, К3 – 1, К4 – 1,1, К5 – 1,33, К6 – 1, К7 – 1,05. Площадь помещения составляет 100 кв.м. Формула уравнения теплового баланса не сложная и под силу каждому человеку.

Так как известна формула количество тепла, необходимое для отоплении помещения, можно рассчитать следующим образом:

Тп = 100*100*1,27*1,25*1*1,1*1,33*1*1,05 = 24386,38 Вт = 24,386 кВт

И чтобы провести расчёт тепловой энергии на отопление формула мощности котла используется следующим образом:

Мк = 1,2*24,386 = 29,2632 кВт.

ПОСМОТРЕТЬ ВИДЕО

На дальнейших этапах определяется количество необходимых отопительных элементов и нагрузка на каждый из них, а также расход энергии на обогрев. Расчет теплопотерь дома в наше время экономии очень актуален.

В.Г. Хромченков, зав. лаб., Г.В. Иванов, аспирант,
Е.В. Хромченкова, студент,
кафедра «Промышленные теплоэнергетические системы»,
Московский энергетический институт (технический университет)

В данной работе обобщены некоторые результаты проведенных нами обследований участков тепловых сетей (ТС) системы теплоснабжения жилищно-коммунальной сферы с анализом существующего уровня потерь тепловой энергии в тепловых сетях. Работа выполнялась в различных регионах РФ, как правило, по просьбе руководства ЖКХ. Значительный объем исследований проводился также в рамках Проекта передачи ведомственного жилого фонда, связанного с кредитом Мирового Банка.

Определение потерь тепла при транспорте теплоносителя является важной задачей, результаты решения которой оказывают серьезное влияние в процессе формирования тарифа на тепловую энергию (ТЭ). Поэтому знание этой величины позволяет также правильно выбирать мощности основного и вспомогательного оборудования ЦТП и, в конечном счете, источника ТЭ. Величина тепловых потерь при транспорте теплоносителя может стать решающим фактором при выборе структуры системы теплоснабжения с возможной ее децентрализацией, выборе температурного графика ТС и др. Определение реальных тепловых потерь и сравнение их с нормативными значениями позволяет обосновать эффективность проведения работ по модернизации ТС с заменой трубопроводов и/или их изоляции.

Зачастую величина относительных тепловых потерь принимается без достаточных на то обоснований. На практике задаются значениями относительных тепловых потерь часто кратными пяти (10 и 15%). Следует отметить, что в последнее время все больше муниципальных предприятий проводят расчеты нормативных тепловых потерь , которые, на наш взгляд, и должны определяться в обязательном порядке. Нормативные потери тепла напрямую учитывают основные влияющие факторы: длину трубопровода, его диаметр и температуры теплоносителя и окружающей среды. Не учитывают только фактическое состояние изоляции трубопроводов. Нормативные тепловые потери должны рассчитываться для всей ТС с определением потерь тепла с утечками теплоносителя и с поверхности изоляции всех трубопроводов, по которым осуществляется теплоснабжение от имеющегося источника тепла. Причем эти расчеты должны выполняться как в плановом (расчетном) варианте с учетом среднестатистических данных по температуре наружного воздуха, грунта, продолжительности отопительного периода и т.д., так и уточняться в конце его по фактическим данным указанных параметров, в том числе с учетом фактических температур теплоносителя в прямом и обратном трубопроводе.

Однако, даже имея правильно определенные средние нормативные потери по всей городской ТС, нельзя эти данные переносить на отдельные ее участки, как это зачастую делается, например, при определении величины присоединенной тепловой нагрузки и выборе мощностей теплообменного и насосного оборудования строящегося или модернизируемого ЦТП. Необходимо их рассчитать для данного конкретного участка ТС, иначе можно получить существенную ошибку. Так, например, при определении нормативных потерь тепла для двух произвольно выбранных нами микрорайонов одного из городов Красноярской области, при примерно одинаковой их расчетной присоединенной тепловой нагрузке одного из них они составили 9,8%, а другого - 27%, т.е. оказались в 2,8 раза большими. Средняя же величина тепловых потерь по городу, принимаемая при проведении расчетов, - 15%. Таким образом, в первом случае тепловые потери оказались в 1,8 раза ниже, а в другом - в 1,5 раза выше средних нормативных потерь. Столь большая разница легко объясняется, если разделить количество переданного за год тепла на площадь поверхности трубопровода, через которую происходит потеря тепла. В первом случае это соотношение равно 22,3 Гкал/м2, а во втором - только 8,6 Гкал/м2, т.е. в 2,6 раза больше. Аналогичный результат можно получить, просто сравнив материальные характеристики участков тепловой сети.

Вообще же ошибка, при определении потерь тепла при транспорте теплоносителя на конкретном участке ТС по сравнению со средним значением, может быть очень большой.

В табл. 1 представлены результаты обследования 5 участков ТС г. Тюмень (кроме расчетов нормативных потерь тепла, нами также были выполнены измерения фактических тепловых потерь с поверхности изоляции трубопроводов, см. ниже). Первый участок представляет собой магистральный участок ТС с большими диаметрами трубопровода

и соответственно большими расходами теплоносителя. Все остальные участки ТС - тупиковые. Потребителями ТЭ на втором и третьем участке являются 2-х и 3-этажные здания, расположенные по двум параллельным улицам. Четвертый и пятый участки также имеют общую тепловую камеру, но если в качестве потребителей на четвертом участке имеются компактно расположенные относительно крупные четырех-и пятиэтажные дома, то на пятом участке - это частные одноэтажные дома, расположенные вдоль одной протяженной улицы.

Как видно из табл. 1, относительные реальные потери тепла на обследованных участках трубопроводов зачастую составляют почти половину от переданного тепла (участки № 2 и № 3). На участке № 5, где расположены частные дома, более 70% тепла теряется в окружающую среду, несмотря на то, что коэффициент превышения абсолютных потерь над нормативными значениями примерно такой же, как на остальных участках. Наоборот, при компактном расположении относительно крупных потребителей, потери тепла резко снижаются (участок № 4). Средняя скорость теплоносителя на этом участке составляет 0,75 м/с. Все это приводит к тому, что фактические относительные тепловые потери на этом участке более чем в 6 раз ниже, чем на остальных тупиковых участках, и составили всего 7,3%.

С другой стороны, на участке № 5 скорость теплоносителя в среднем составляет 0,2 м/с, причем на последних участках теплосети (в таблице не показано) из-за больших диаметров трубы и малых значений расходов теплоносителя она составляет всего 0,1-0,02 м/с. С учетом относительно большого диаметра трубопровода, а следовательно, и поверхности теплообмена, в грунт уходит большое количество тепла.

При этом надо иметь в виду, что количество тепла, теряемое с поверхности трубы, практически не зависит от скорости движения сетевой воды, а зависит только от ее диаметра, температуры теплоносителя и состояния изоляционного покрытия. Однако относительно количества передаваемого по трубопроводам тепла,

тепловые потери напрямую зависят от скорости теплоносителя и резко возрастают при ее снижении. В предельном случае, когда скорость теплоносителя составляет сантиметры в секунду, т.е. вода практически стоит в трубопроводе, большая часть ТЭ может теряться в окружающую среду, хотя потери тепла могут и не превышать нормативные.

Таким образом, величина относительных тепловых потерь зависит от состояния изоляционного покрытия, и в значительной степени определяется также протяженностью ТС и диаметром трубопровода, скоростью движения теплоносителя по трубопроводу, тепловой мощностью присоединенных потребителей. Поэтому наличие в системе теплоснабжения мелких, удаленных от источника потребителей ТЭ может привести к росту относительных тепловых потерь на многие десятки процентов. Наоборот, в случае компактной ТС с крупными потребителями, относительные потери могут составлять считанные проценты от отпущенного тепла. Все это следует иметь в виду при проектировании систем теплоснабжения. Например, для рассмотренного выше участка № 5, возможно, более экономично было бы в частных домах установить индивидуальные газовые теплогенераторы.

В приведенном выше примере нами были определены, наряду с нормативными, фактические потери тепла с поверхности изоляции трубопроводов. Знание реальных тепловых потерь очень важно, т.к. они, как показал опыт, могут в несколько раз превышать нормативные значения. Такая информация позволит иметь представление о фактическом состоянии тепловой изоляции трубопроводов ТС, определить участки с наибольшими тепловыми потерями и рассчитать экономическую эффективность замены трубопроводов. Кроме того, наличие такой информации позволит обосновать реальную стоимость 1 Гкал отпущенного тепла в региональной энергетической комиссии. Однако, если тепловые потери, связанные с утечкой теплоносителя, можно определить по фактической подпитке ТС при наличии соответствующих данных на источнике ТЭ, а при их отсутствии рассчитать их нормативные значения, то определение реальных потерь тепла с поверхности изоляции трубопроводов является весьма трудной задачей.

В соответствии с для определения фактических тепловых потерь на испытываемых участках двухтрубной водяной ТС и сравнения их с нормативными значениями, должно быть организовано циркуляционное кольцо, состоящее из прямого и обратного трубопроводов с перемычкой между ними. Все ответвления и отдельные абоненты должны быть от него отсоединены, а расход на всех участках ТС должен быть одинаков. При этом минимальный объем испытываемых участков по материальной характеристике должен быть не менее 20% материальной характеристики всей сети, а перепад температур теплоносителя должен составлять не менее 8 ОС. Таким образом, должно образоваться кольцо большой протяженности (несколько километров).

Учитывая практическую невозможность проведения испытаний по данной методике и выполнения ряда ее требований, в условиях отопительного периода, а также сложность и громоздкость, нами предложена и с успехом много лет используется методика тепловых испытаний, основанная на простых физических законах теплопередачи. Суть ее заключается в том, что, зная снижение («сбег») температуры теплоносителя в трубопроводе от одной точки измерения до другой при известном и неизменном его расходе, легко вычислить потерю тепла на данном участке ТС. Затем при конкретных температурах теплоносителя и окружающей среды в соответствии с полученные значения тепловых потерь пересчитываются на среднегодовые условия и сравниваются с нормативными, также приведенными к среднегодовым условиям для данного региона с учетом температурного графика теплоснабжения. После этого определяется коэффициент превышения фактических потерь тепла над нормативными значениями.

Измерение температуры теплоносителя

Учитывая очень малые значения перепада температур теплоносителя (десятые доли градуса), повышенные требования предъявляются как к измерительному прибору (шкала должна быть с десятыми долями ОС), так и тщательности самих измерений. При измерении температуры поверхность труб должна быть зачищена от ржавчины, а трубы в точках проведения измерений (на концах участка) желательно иметь одного диаметра (одинаковой толщины). С учетом вышесказанного температура теплоносителей (прямого и обратного трубопроводов) должна измеряться в местах разветвления ТС (обеспечение постоянного расхода), т.е. в тепловых камерах и колодцах.

Измерение расхода теплоносителя

Расход теплоносителя должен быть определен на каждом из неразветвленных участков ТС. При проведении испытаний иногда удавалось использовать портативный ультразвуковой расходомер. Сложность непосредственного измерения расхода воды прибором связана с тем, что чаще всего обследуемые участки ТС расположены в непроходных подземных каналах, а в тепловых колодцах, из-за расположенной в нем запорной арматуры, не всегда возможно соблюсти требование, касающееся необходимых длин прямолинейных участков до и после места установки прибора. Поэтому для определения расходов теплоносителя на обследуемых участках теплотрассы наряду с непосредственными измерениями расходов в некоторых случаях использовались данные с теплосчетчиков, установленных на зданиях, присоединенных к этим участкам сети. При отсутствии в здании теплосчетчиков расходы воды в подающем или обратном трубопроводах измерялись переносным расходомером на вводе в здания.

В случае невозможности непосредственно измерить расход сетевой воды для определения расходов теплоносителя использовались расчетные его значения.

Таким образом, зная расход теплоносителя на выходе из котельных, а также на других участках, включая здания, присоединенные к обследуемым участкам теплосети, можно определить расходы практически на всех участках ТС.

Пример использования методики

Следует также отметить, что проще всего, удобнее и точнее проводить подобное обследование при наличии теплосчетчиков у каждого потребителя или хотя бы у большинства. Лучше, если теплосчетчики имеют часовой архив данных. Получив с них необходимую информацию, легко определить как расход теплоносителя на любом участке ТС, так и температуру теплоносителя в ключевых точках с учетом того, что, как правило, здания расположены в непосредственной близости от тепловой камеры или колодца. Таким образом, нами были выполнены расчеты тепловых потерь в одном из микрорайонов г. Ижевска без выезда на место. Результаты получились примерно такими же, как и при обследовании ТС в других городах со сходными условиями - температурой теплоносителя, срока эксплуатации трубопроводов и др.

Многократные измерения фактических тепловых потерь с поверхности изоляции трубопроводов ТС в различных регионах страны указывают на то, что потери тепла с поверхности трубопроводов, находящиеся в эксплуатации 10-15 и более лет, при прокладке труб в непроходных каналах в 1,5-2,5 раза превышают нормативные значения. Это в случае, если нет видимых нарушений изоляции трубопровода, отсутствует вода в лотках (по крайней мере, во время проведения измерений), а также косвенных следов ее пребывания, т.е. трубопровод находится в видимом нормальном состоянии. В случае же, когда вышеуказанные нарушения присутствуют, фактические потери тепла могут превысить нормативные значения в 4-6 и более раз.

В качестве примера приведены результаты обследования одного из участков ТС, теплоснабжение по которому осуществляется от ТЭЦ г. Владимира (табл. 2) и от котельной одного из микрорайонов этого города (табл. 3). Всего в процессе работы было обследовано около 9 км теплотрассы из 14 км, которые планировались к замене на новые, предварительно изолированные трубы в пенополиуретановой оболочке. Замене подлежали участки трубопроводов, теплоснабжение по которым осуществляется от 4 муниципальных котельных и от ТЭЦ.

Анализ результатов обследования показывает, что потери тепла на участках с теплоснабжением от ТЭЦ в 2 раза и более превышают тепловые потери на участках теплосети, относящихся к муниципальным котельным. В значительной степени это связано с тем, что срок службы их зачастую составляет 25 лет и более, что на 5-10 лет больше срока службы трубопроводов, теплоснабжение по которым осуществляется от котельных. Второй причиной лучшего состояния трубопроводов, на наш взгляд, является то, что протяженность участков, обслуживаемых работниками котельной, относительно небольшая, расположены они компактно и руководству котельных проще следить за состоянием теплосети, вовремя обнаруживать утечки теплоносителя, проводить ремонтные и профилактические работы. На котельных имеются приборы для определения расхода подпиточной воды, и в случае заметного увеличения расхода «подпитки» можно обнаружить и устранить образовавшиеся утечки.

Таким образом, наши измерения показали, что предназначенные к замене участки ТС, особенно участки, присоединенные к ТЭЦ, действительно находятся в плохом состоянии в отношении повышенных потерь тепла с поверхности изоляции. В тоже время анализ результатов подтвердил полученные при других обследованиях данные об относительно невысоких скоростях теплоносителя (0,2-0,5 м/с) на большинстве участков ТС. Это приводит, как отмечено выше, к увеличению тепловых потерь и если может быть как-то оправданным при эксплуатации старых трубопроводов, находящихся в удовлетворительном состоянии, то при модернизации ТС (в большинстве своем) необходимо уменьшение диаметра заменяемых труб. Это тем более важно с учетом того, что предполагалось при замене старых участков ТС на новые использовать предварительно изолированные трубы (того же диаметра), что связано с большими затраты (стоимость труб, запорной арматуры, отводов и т.д.), поэтому уменьшение диаметра новых труб до оптимальных значений может существенно снизить общие затраты.

Изменение диаметров трубопроводов требует проведения гидравлических расчетов всей ТС.

Такие расчеты были выполнены применительно к ТС четырех муниципальных котельных, которые показали, что из 743 участков сети на 430 могут быть существенно снижены диаметры труб. Граничными условиями проведения расчетов были неизменный располагаемый напор на котельных (замена насосов не предусматривалась) и обеспечение напора у потребителей не менее 13 м. Экономический эффект только от снижения стоимости самих труб и запорной арматуры без учета остальных составляющих - стоимости оборудования (отводы, компенсаторы и т.д.), а также снижения потерь тепла из-за уменьшения диаметра трубы составил 4,7 млн руб.

Проведенные нами измерения потерь тепла на участке ТС одного из микрорайонов г. Оренбурга после полной замены труб на новые предварительно изолированные в пенополиуретано-вой оболочке, показали, что тепловые потери стали на 30% ниже нормативных.

Выводы

1. При проведении расчетов потерь тепла в ТС необходимо определять нормативные потери для всех участков сети в соответствии с разработанной методикой .

2. При наличии мелких и удаленных потребителей потери тепла с поверхности изоляции трубопроводов могут быть очень большими (десятки процентов), поэтому необходимо рассмотреть целесообразность альтернативного теплоснабжения данных потребителей.

3. Помимо определения нормативных тепловых потерь при транспорте теплоносителя по

ТС необходимо определить на отдельных характерных участках ТС фактические потери, что позволит иметь реальную картину ее состояния, обоснованно выбирать участки, требующие замены трубопроводов, точнее рассчитывать стоимость 1 Гкал тепла.

4. Практика показывает, что скорости теплоносителя в трубопроводах ТС часто имеют низкие значения, что приводит к резкому увеличению относительных потерь тепла. В таких случаях при проведении работ, связанных с заменой трубопроводов ТС, следует стремиться к уменьшению диаметра труб, что потребует проведения гидравлических расчетов и наладки ТС, но позволит существенно снизить затраты на приобретение оборудования и значительно уменьшить потери тепла при эксплуатации ТС. Особенно это актуально при использовании современных предварительно изолированных труб. На наш взгляд близкими к оптимальным являются скорости теплоносителя 0,8-1,0 м/с.

valeryg@list.ru

Литература

1. «Методика определения потребности в топливе, электрической энергии и воде при производстве и передаче тепловой энергии и теплоносителей в системах коммунального теплоснабжения», Государственный комитет РФ по строительству и жилищно-коммунальному хозяйству, Москва. 2003, 79 с.

Выберите город Выберите город Брест Витебск Волгоград Днепропетровск Екатеринбург Запорожье Казань Киев Луганск Львов Минск Москва Нижний Новгород Новосибирск Одесса Омск Пермь Рига Ростов-на-Дону Самара Санкт-Петербург Симферополь Уфа Харьков Челябинск Чернигов t нар = - o C

Введите температуру воздуха в помещении; t вн = + o C

Теплопотери через стены развернуть свернуть

Вид фасада По умолчанию Без вентилируемой воздушной прослойки С вентилируемой воздушной прослойкой α =

Площадь наружных стен, кв.м.

Толщина первого слоя, м.

Толщина второго слоя, м.

Толщина третьего слоя, м.

Теплопотери через стены, Вт

Теплопотери через окна развернуть свернуть

Выберите остекление

По умолчанию Однокамерный стеклопакет Двухкамерный стеклопакет Однокамерный стеклопакет с селективным покрытием Двухкамерный стеклопакет с аргоновым заполнением Двойное остекление в раздельных переплетах Два однокамерных стеклопакета в спаренных переплетах k =

Введите площадь окон, кв.м.

Теплопотери через окна

Теплопотери через потолки развернуть свернуть

Выберите вид потолка

По умолчанию Мансарда. Между потолком и кровлей воздушная прослойка Мансарда. Кровля плотно прилегает к потолку Потолок под неотапливаемым чердаком α =

Введите площадь потолка, кв.м.

Материал первого слоя Выберите материал Бетон Железобетон Пенобетон 1000 кг/куб.м. Пенобетон 800 кг/куб.м. Пенобетон 600 кг/куб.м. Газоблок D400 Aeroc на клею Шлакобетон Цементно-песчаный раствор Porotherm P+W на термоиз. растворе Кладка из пустотелого керам. кирпича Кладка из силикатного кирпича Кладка из сплошного керам. кирпича Древесина Фанера ДВП ДСП Минвата Пенопласт Пенополистирол Гипсокартон λ =

Толщина первого слоя, м.

Материал второго слоя Выберите материал Бетон Железобетон Пенобетон 1000 кг/куб.м. Пенобетон 800 кг/куб.м. Пенобетон 600 кг/куб.м. Газоблок D400 Aeroc на клею Шлакобетон Цементно-песчаный раствор Porotherm P+W на термоиз. растворе Кладка из пустотелого керам. кирпича Кладка из силикатного кирпича Кладка из сплошного керам. кирпича Древесина Фанера ДВП ДСП Минвата Пенопласт Пенополистирол Гипсокартон λ =

Толщина второго слоя, м.

Материал третьего слоя Выберите материал Бетон Железобетон Пенобетон 1000 кг/куб.м. Пенобетон 800 кг/куб.м. Пенобетон 600 кг/куб.м. Газоблок D400 Aeroc на клею Шлакобетон Цементно-песчаный раствор Porotherm P+W на термоиз. растворе Кладка из пустотелого керам. кирпича Кладка из силикатного кирпича Кладка из сплошного керам. кирпича Древесина Фанера ДВП ДСП Минвата Пенопласт Пенополистирол Гипсокартон λ =

Толщина третьего слоя, м.

Теплопотери через потолок

Теплопотери через пол развернуть свернуть

Выберите вид пола

По умолчанию Над холодным подвалом, сообщающимся с наружным воздухом Над неотапливаемым подвалом со световыми проемами в стенах Над неотапливаемым подвалом без световых проемов в стенах Над техническим подпольем ниже уровня земли Пол на грунте α =

Введите площадь пола, кв.м.

Материал первого слоя Выберите материал Бетон Железобетон Пенобетон 1000 кг/куб.м. Пенобетон 800 кг/куб.м. Пенобетон 600 кг/куб.м. Газоблок D400 Aeroc на клею Шлакобетон Цементно-песчаный раствор Porotherm P+W на термоиз. растворе Кладка из пустотелого керам. кирпича Кладка из силикатного кирпича Кладка из сплошного керам. кирпича Древесина Фанера ДВП ДСП Минвата Пенопласт Пенополистирол Гипсокартон λ =

Толщина первого слоя, м.

Материал второго слоя Выберите материал Бетон Железобетон Пенобетон 1000 кг/куб.м. Пенобетон 800 кг/куб.м. Пенобетон 600 кг/куб.м. Газоблок D400 Aeroc на клею Шлакобетон Цементно-песчаный раствор Porotherm P+W на термоиз. растворе Кладка из пустотелого керам. кирпича Кладка из силикатного кирпича Кладка из сплошного керам. кирпича Древесина Фанера ДВП ДСП Минвата Пенопласт Пенополистирол Гипсокартон λ =

Толщина второго слоя, м.

Материал третьего слоя Выберите материал Бетон Железобетон Пенобетон 1000 кг/куб.м. Пенобетон 800 кг/куб.м. Пенобетон 600 кг/куб.м. Газоблок D400 Aeroc на клею Шлакобетон Цементно-песчаный раствор Porotherm P+W на термоиз. растворе Кладка из пустотелого керам. кирпича Кладка из силикатного кирпича Кладка из сплошного керам. кирпича Древесина Фанера ДВП ДСП Минвата Пенопласт Пенополистирол Гипсокартон λ =

Толщина третьего слоя, м.

Теплопотери через пол

Материал первого слоя Выберите материал Бетон Железобетон Пенобетон 1000 кг/куб.м. Пенобетон 800 кг/куб.м. Пенобетон 600 кг/куб.м. Газоблок D400 Aeroc на клею Шлакобетон Цементно-песчаный раствор Porotherm P+W на термоиз. растворе Кладка из пустотелого керам. кирпича Кладка из силикатного кирпича Кладка из сплошного керам. кирпича Древесина Фанера ДВП ДСП Минвата Пенопласт Пенополистирол Гипсокартон λ =

Толщина первого слоя, м.

Материал второго слоя Выберите материал Бетон Железобетон Пенобетон 1000 кг/куб.м. Пенобетон 800 кг/куб.м. Пенобетон 600 кг/куб.м. Газоблок D400 Aeroc на клею Шлакобетон Цементно-песчаный раствор Porotherm P+W на термоиз. растворе Кладка из пустотелого керам. кирпича Кладка из силикатного кирпича Кладка из сплошного керам. кирпича Древесина Фанера ДВП ДСП Минвата Пенопласт Пенополистирол Гипсокартон λ =

Толщина второго слоя, м.

Материал третьего слоя Выберите материал Бетон Железобетон Пенобетон 1000 кг/куб.м. Пенобетон 800 кг/куб.м. Пенобетон 600 кг/куб.м. Газоблок D400 Aeroc на клею Шлакобетон Цементно-песчаный раствор Porotherm P+W на термоиз. растворе Кладка из пустотелого керам. кирпича Кладка из силикатного кирпича Кладка из сплошного керам. кирпича Древесина Фанера ДВП ДСП Минвата Пенопласт Пенополистирол Гипсокартон λ =

Толщина третьего слоя, м.

Площадь зоны 1, кв.м. развернуть (откроется в новом окне)

Очень часто на практике принимают теплопотери дома из расчета средних около 100 Вт/кв.м. Для тех, кто считает деньги и планирует обустроить дом без лишних капиталовложений и с низким расходом топлива, такие расчеты не подойдут. Достаточно будет сказать, что теплопотери хорошо утепленного дома и неутепленного могут отличаться в 2 раза. Точные расчеты по СНиП требуют большого времени и специальных знаний, но эффект от точности не ощутится должным образом на эффективности системы отопления.

Данная программа разрабатывалась с целью предложить лучший результат цена/качество, т.е. (затраченное время)/(достаточная точность).

Коэффициенты теплопроводности строительных материалов взяты по , приложение 3 для нормального влажностного режима нормальной зоны влажности.

03.12.2017 - скорректирована формула расчета теплопотерь на инфильтрацию. Теперь расхождений с профессиональными расчетами проектировщиков не обнаружено (по теплопотерям на инфильтрацию).

10.01.2015 - добавлена возможность менять температуру воздуха внутри помещений.

FAQ развернуть свернуть

Как посчитать теплопотери в соседние неотапливаемые помещения?

По нормам теплопотери в соседние помещения нужно учитываеть, если разница температур между ними превышает 3 o C. Это может быть, например, гараж. Как с помощью онлайн-калькулятора посчитать эти теплопотери?

Пример. В комнате у нас должно быть +20, а в гараже мы планируем +5. Решение . В поле t нар ставим температуру холодной комнаты, в нашем случае гаража, со знаком "-". -(-5) = +5 . Вид фасада выбираем "по умолчанию". Затем считаем, как обычно.

Внимание! После расчета потерь тепла из помещения в помещение не забываем выставлять температуры обратно.

В.Л. Звягинцев, главный инженер Сумского государственного университета, г. Сумы, Украина.

Занимаясь вопросами теплоснабжения автору данной статьи неоднократно доводилось сталкиваться с различной регламентирующей документацией в этой сфере, в том числе с самым солидным и профессиональным документом - КТМ - 204 Украины 244-94 «Нормы и указания по нормированию затрат топлива и тепловой энергии на отопление жилых и общественных зданий, а также на хозяйственно бытовые потребности Украины.»

Автор критиковал несовершенство документа КТМ - 204 Украины 244-94 по двум вопросам, по причине отсутствия примера по использованию таблицы 7.1, стр.76-105 и отсутствие четкого примера по использованию пункта 3.1.8. стр. 41 для определения тепловых потерь в тепловых сетях.

Приведенные ниже примеры эти секреты раскрывают, они важны при разработке тарифов на тепловую энергию, для проведения энергоаудита теплоснабжающих предприятий, для разработки тепловых схем населенных пунктов, для системного расчета реализованной тепловой энергии и тепловых нагрузок жилых домов в сложившихся условиях, когда часть квартир в домах отключилось от центрального отопления. И, наконец, настоящая статья и примеры раскрывают теорию вопроса в деталях, поэтому читателя ожидают интересные выводы и факты.

ПРИМЕР 1.

Методика определяет реализованную тепловую энергию в тепловой сети по табличным значениям для г.Глухова Сумской области. Расчет ведется в соответствии с методикой КТМ - 204 Украины 244-94 (таблица 7.1)

В представленных расчетах значение общей отапливаемой площади здания складывается из двух составных:

Fобщ. = Fпол. + Fкомм,

где Fпол. - расчетная полезная отапливаемая площадь квартир, м2 (смотри технические паспорта на жилые дома);

Fкомм - расчетная коммунальная отапливаемая площадь помещений общего пользования в жилом доме (смотри технические паспорта на жилые дома).

Определение объемов реализованной тепловой энергии и тепловой нагрузки для жилых домов:

Qреал. = (Fпол. + Fкомм.) х Kуд., (Гкалчас)

где Куд. - коэффициент, который учитывает удельную плановую нагрузку на 1 м2 площади в год, Гкалм2*год (смотри таблица 7.1.)

Реализованная тепловая энергия на проектную площадь равняется 23656,0 Гкал/год, в том числе на коммунальное отопление 6410,1 х 0,19570 = 1254,5 Гкалгод, на отопление полезной площади квартир 23656,0 - 1254,5 = 22401,5 Гкалгод.

Подключенная тепловая нагрузка на отопление жилых домов определяется:

Qподкл. = / , Гкал/час

где Qреал. - реализованная тепловая энергия за отопительный сезон (за год) на отопление, Гкал;

tв. - внутренняя расчетная температура воздуха в помещениях здания, принимается +20оС (смотри ДСТУ - НБВ.1.1-27:2010 Строительная климатология. - действует от 01.01.2010);

tн.р. - наружная расчетная температура воздуха, принимается -25оС (смотри ДСТУ - НБВ.1.1-27:2010 Строительная климатология. - действует от 01.01.2010);

24 - количество часов в сутках;

nсут. - количество дней отопительного сезона (смотри ДСТУ - НБВ.1.1-27:2010 Строительная климатология. - действует от 01.01.2010)

tср. - наружная средняя расчетная температура воздуха за отопительных сезон, принимаем -1,4 оС (смотри ДСТУ - НБВ.1.1-27:2010 Строительная климатология. - действует от 01.01.2010).

Таблица.1 Результаты расчета суммарной тепловой нагрузки жилых домов.

Qподкл. = (23656,0 х 45)/(24 х 187 х 21,4) = 11,084 Гкал/час

Qподкл.ком. = (1254,5 х 45)/(24 х 187 х 21,4) = 0,588 Гкал/час

Qs = Qподкл. / F, Гкал/м2

За отопительный сезон Qs.общ. = 23656 / 120876,6 = 0,19570 Гкал/м2;

За отопительный сезон Qs.ком. = 1254,5 / 114466,6 = 0,01096 Гкалм2;

За отопительный сезон Qs.пол. = 22401,5 / 114466,6 = 0,19570 Гкал/м2;

За сутки Qs.сут. = 0,19570 /187 = 0,001046 Гкал/м2;

За час Qs.час = 0,001046 / 24 = 0,0000436 Гкал/м2.

Для определения средней нормативной тепловой нагрузки брались величины отапливаемой площади, которые были уточнены при проведении энергетического обследования.

Реализованная тепловая энергия отапливаемых площадей, которые остались на центральном отоплении, равняются 18450,6 Гкал/год, в том числе на коммунальное отопление 6410 х 0,19844 = 1272,0 Гкал/год, на отопление полезной площади квартир 18450,6 - 1272,0 = 1717,6 Гкал/год.

Qподкл. = (18450,6 х 45) / (24 х 187 х 21,4) = 8,645 Гкал /час

Qподкл.ком. = (1272,0 х 45)/(24 х 187 х 21,4) = 0,596 Гкал/час

Нормы затрат тепловой энергии на 1 м2 отапливаемой площади для населения:

Qs = Qподкл. / F, Гкал/м2

За отопительный сезон Qs.общ. = 18450,6 / 92977,0 = 0,19844 Гкал/м2;

За отопительный сезон Qs.ком. = 1272,0 / 114466,6 = 0,01111 Гкалм2;

За отопительный сезон Qs.пол. = 17178,6 / 86566,9 = 0,19844 Гкал/м2;

За сутки Qs.сут. = 0,19844 /187 = 0,001061 Гкал/м2;

За час Qs.час = 0,001061 / 24 = 0,0000442 Гкал/м2.

Таблица.2 Результаты расчета суммарной тепловой нагрузки жилых домов, по площади, которая осталась.

ПРИМЕР 2

Расчет тепловых потерь в тепловых сетях ведется согласно методики, определенной в п.3.1.8 стр.41 КТМ -204 Украины 244-94.

Методика в КТМ -204 Украины 244-94 определяет средние потери тепловой энергии в тепловых сетях.

Для определения среднего значения тепловых потерь в тепловой сети, автор предлагает рассчитывать эту величину по среднему потребителю магистрали, а именно, определение радиуса до балансовой средней тепловой нагрузки (Rб.с.т.н.) системы теплоснабжения источника (котельная, ТЭЦ) по формуле:

Rб.с.т.н = ∑Qподкл. / 2, Гкал/час,

∑ Rб.с.т.н = 11,084 / 2 = 5,542 Гкал/час

где Rб.с.т.н - расстояние от источника до потребителя, сумма подключенной тепловой нагрузки которого была прибавлена последней до величины 5,542 Гкал/час по длине магистрального и распределительного подающего трубопровода;

∑Qподкл. - сумма проектных (фактических) тепловых нагрузок потребителей источника, Гкал/час.

Rб.с.т.н. в реальности протяженности тепловой сети магистрали равно 1200 м.

Согласно п. 3.1.8 стр.41 КТМ -204 Украины 244-94 и разработанной автором таблицы 3 полученный результат соответствует тепловым потерям 5,4 %.

Таблица 3. Удельные и тепловые потери в водяных тепловых сетях.

Длина тепл. сети,

Тепловые Lм,Rб.с.т.н.

Сотни метров, n = L/100м
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Удельные потери,qуд. 0,7 0,64 0,63 0,60 0,58 0,57 0,55 0,53 0,52 0,48 0,47 0,45 0,43 0,42 0,40
Тепловые потери, qт.п. 0,7 1,3 1,9 2,4 2,9 3,4 3,9 4,2 4,7 4,8 5,2 5,4 5,6 5,9 6,0
Длина тепл. сети,

Тепловые Lм,Rб.с.т.н.

Сотни метров, n = L/100м
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Удельные потери,qуд. 0,38 0,36 0,34 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32
Тепловые потери, qт.п. 6,1 6,1 6,1 6,1 6,4 6,7 7,0 7,4 7,7 8,0 8,3 8,6 9,0 9,3 9,6
Длина тепл. сети,

Тепловые Lм,Rб.с.т.н.

Сотни метров, n = L/100м
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
Удельные потери,qуд. 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,31 0,30 0,29 0,29
Тепловые потери, qт.п. 9,9 10,2 10,6 10,9 11,2 11,5 11,8 12,2 12,5 12,8 13,0 13,0 13,0 13,0 13,0
Длина тепл. сети,

Тепловые Lм,Rб.с.т.н.

Сотни метров, n = L/100м
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Удельные потери,qуд. 0,28 0,28 0,27 0,27 0,26 0,26 0,25 0,25 0,24 0,24 0,23 0,23 0,22 0,22 0,22
Тепловые потери, qт.п. 13,0 13,0 13,0 13,0 13,0 13,0 13,0 13,0 13,0 13,0 13,0 13,0 13,0 13,0 13,0

Таблица 3 имеет продолжение. По данным таблицы 3 можно построить график удельных потерь и график тепловых потерь в водяных тепловых сетях.

График удельных и тепловых потерь в водяных тепловых сетях.

Особенности предлагаемого графика удельных тепловых потерь и графика тепловых потерь в водяных теплових сетях:

- График совпадает с цифрами КТМ -204 Украины 244-94 в следующих точках:

до 500 м - 2,9 %; до 1000 м - 4,8%; максимальне тепловые потери - 13%.

График имеет не одну а две кривые: удельных теплових потер и теплових потер на каждые 100 м водяной тепловой сети.

Кривая теплових потерь идет на увеличение и имеет одну точку излома на расстоянии 4,1 км, где тепловые потери в водяной тепловой сети достигают 13% и дальше не увеличиваются и не уменьшаются.

Кривая графика удельных теплових потер не совпадает с величинами, указанными в КТМ -204 Украины 244-94, где на расстоянии 1000 м удельные тепловые потери составляют 0,48% и скачком не могут энергетически быстро вырасти до 0,6%, на самом деле удельные тепловые потери продолжают уменьшаться до расстояния 1,9 км до 0,32%, где график имеет первую точку излома на относительно горизонтальную кривую. Другая точка излома графика имеет место на расстоянии 4,1 км, где удельные тепловые потери начинают снова уменьшаться. График удельных тепловых потерь в бесконечности не пересекает ось нуля, поэтому график тепловых потерь в водяных тепловых сетях далее не увеличивается и составляет 13% по формуле qт.п. = n х qуд., при условии

n = Lтепловой сети / 100 м.

ВЫВОДЫ:

1. Сегодня тепловые потери в водяных теплових сетях рекомендуется рассчитывать по «Методическим указаним по определению теплових потер в водяных теплових сетях» - РД 34.09.25 от 01.01.1998года.

С точки зрения автора оба расчета теплових потерь в водяных теплових сетях пока имеют право на жизнь, но предлагаемый способ рассчета ясен и краток на базе КТМ -204 Украины 244-94, а рассчет на базе РД 34.09.25 от 01.01.1998года очень громоздкий, поэтому приводит к не объективной оценке в большую сторону в два и болем раза.

Положения РД 34.09.25 от 01.01.1998года были известны и ранее (смотри, например, В.И.Манюк и другие «Справочник по наладке и эксплуатации водяных теплових сетей», Москва, Стройиздат, 1982 год), однако в КТМ -204 Украины 244-94 и предшествующих документах СССР эта версия не нашла применения. Очевидно, по причинам того, что инстументальные замеры для заполнения таблиц РД 34.09.25 от 01.01.1998года выполнялись десятки лет назад приметивными приборами. Содержание РД 34.09.25 от 01.01.1998года противоречиво по принципиальным вопросам. Например, в формуле 7 удельные тепловые потери через тепловую изоляцию трубопровода водяной тепловой сети измеряются в Вт/м или Ккал/(м*час), те же единицы стоят в таблицях 1 и 2 в Вт/м2 или Ккал/(м2*час). Таблицы 3,4,5 плотности теплового потока только усложняют и запутывают и до того уже сложные расчеты по формуле 7. По устаревшим данням таблицы 4 можно сделать вывод, что современная тепловая изоляция трубопроводов при бесканальной прокладке уступает примерно в два раза тепловым потерям через тепловую изоляцию в водяных трубопроводах со старой изоляцией в непроходных каналах и надземной (воздушной) прокладке.

2. Предлагаемая усовершенствованная простая методика (пример 2) на базе КТМ -204 Украины 244-94 расчета тепловых потерь в водяных тепловых сетях утверждает и доказывает, что в водяных тепловых сетях потери тепловой энергии не превышают 13% независимо от тепловой мощности источника.

3. Вместе с тем, предлагаемая методика (пример 1) на базе КТМ -204 Украины 244-94 утверждает и доказывает, что большие и иногда основные тепловые потери тепловой энергии в системе теплоснабжения источника находятся внутри отапливаемых зданий, например, в виде потребленной коммунальной тепловой энергии в жилых домах в объемах от 8 до 19%, расходуемых на отопление холлов, лестничных площадок, коридоров вне квартир, площадок мусоропроводов, лифтовых шахт, помещений колясочных и т.д .

4. Наряду с устранением теплових потерь в водяных теплових сетях необходимо равноценно устранять коммунальные тепловые потери в отапливаемых жилых домах, даже когда в доме установлен тепловой счетчик, который учитывает и потребление коммунальной тепловой энергии.



просмотров