Нагрузки и воздействия на здания. Нагрузки и воздействия на стальные конструкции многоэтажные здания. Секционные жилые дома

Нагрузки и воздействия на здания. Нагрузки и воздействия на стальные конструкции многоэтажные здания. Секционные жилые дома

А.Е.Сутягин 2017г

Здания (жилище) - часть культуры человека. Искусственный артефакт. Появляются вместе с человеком. Элемент очеловечивания природы.
Предназначение здания, как такового - защищать человека, человеческий организм, его здоровье от влияния природы, от влияния внешних природных) факторов. А также создавать пригодную среду обитания невзирая на внешние климатические воздействия.

Любое здание состоит, прежде всего, из конструкций, выполненных из того или иного материала. а также из различного рода инженерных систем предназначенных для комфортной среды и удовлетворении основных физиологических потребностей людей.

Определение понятий - здание и сооружение.
Здание - предназначено для постоянного пребывания людей.
Сооружение - не предназначено для постоянного пребывания людей. Необходимо для осуществления специфических технологических задач.

Составные части здания (конструкции).
Фундамент - передача нагрузки от всего здания на естественное основание (грунт). (“Корень здания”).
Стены - защита от ветровых и тепловых воздействий.
Каркас - скелет здания.
Перекрытия - восприятие нагрузки, от находящихся в здании людей, мебели и оборудования.
Кровля - защита здания от атмосферных осадков (снег, дождь), солнечных лучей, тепловых воздействий.

Количество видов и типов частей здания настолько разнообразно и сильно зависит от назначения здания. В рамках данной статьи остановимся на основных моментах.

Конструкции здания подразделяются на несущие и ограждающие конструкции.
Несущие конструкции - воспринимают силовые воздействия от других частей здания и подвижной нагрузки (людей) и передают их на основание (через фундаменты). Параметры несущих конструкций назначаются только на основании специализированных расчетов.
Ограждающие конструкции (ненесущие) - конструкции предназначенные для защиты людей от внешних факторов и обеспечивающие нормальное функционирования здания согласно назначению здания. Например окна и двери.
Ограждающие конструкции первыми воспринимают силовые воздействия и передают их на несущие конструкции. Четкой градации между этими конструкция провести затруднительно. Обычно в зданиях (особенно в прошлом) те или иные конструкции могут сочетать функции несущих и ограждающих конструкций.
Например, кирпичная кладка много веков - это и защита от тепловых воздействий и хороший несущий элемент.
В индустриальных зданиях стараются разделить эти функции. (Например каркас и сендвич-панели).

Здания и сооружения должны сопротивляться (выдерживать) требуемым нормативными документами нагрузкам и воздействиям.

Статья 7 Федерального закона N 384-ФЗ "Технический регламент о безопасности зданий и сооружений" вводит понятие механической безопасности здания или сооружения, а именно:

"Строительные конструкции и основание здания или сооружения должны обладать такой прочностью и устойчивостью, чтобы в процессе строительства и эксплуатации не возникало угрозы причинения вреда жизни или здоровью людей, имуществу физических или юридических лиц, государственному или муниципальному имуществу, окружающей среде, жизни и здоровью животных и растений в результате:

1) разрушения отдельных несущих строительных конструкций или их частей;

2) разрушения всего здания, сооружения или их части;

3) деформации недопустимой величины строительных конструкций, основания здания или сооружения и геологических массивов прилегающей территории;

4) повреждения части здания или сооружения, сетей инженерно-технического обеспечения или систем инженерно-технического обеспечения в результате деформации, перемещений либо потери устойчивости несущих строительных конструкций, в том числе отклонений от вертикальности."

Нагрузки и воздействия.

Нагрузки - то что непосредственно оказывают силовые воздействия на элемент конструкции. Воздействия - то что вызывает (опосредованно) в конструкциях внутренние усилия или деформации.

Нагрузки от веса несущих и ограждающих конструкций (статические)
. Атмосферные нагрузки (динамические)
.. снеговая
.. дождевая
.. ветровая (квазистатические и динамические)
.. гололедная
.. температурная (воздействие)
.. ледовая
.. волновая (штормовая)
.. магнитная и электромагнитная
и другие.
. Воздействия смещений земной коры
.. сейсмическая (тектоническая)
.. просадочная (в результате замачивания грунтов)
.. влияние горных выработок
.. влияние карстово-суффозионных процессов
.. Аварийные (особые)
.. пожар (обрушение и тепловое воздействие)
.. столкновение с транспортным средством)
.. взрывное
.. обрушение частей здания
.. Нагрузки от редких природных факторов
.. ураганы
.. смерчи
.. цунами
и др.

Полезные нагрузки (для чего собственно и проектируется здание)

Нагрузки от веса людей (“живая” нагрузка) (квазистатическая)
. нагрузки от мебели и бытового оборудования (квазистатическая)
. Технологические нагрузки (производство)
. Вес и динамические воздействия производственного оборудования.
. Крановые нагрузки
. Нагрузки от внутрицехового транспорта
. Нагрузки от лифтов (и тп.).
. Температурные технологические нагрузки
. Повышенное давление (вакуум)
. Технологические нагрузки на сооружения (мосты, кран, дамбы, плотины, аэродромы и т.д.)

По характеру воздействия нагрузки делятся на
. кратковременные (многократно-повторяющиеся или эпизодические)
. длительные
. постоянные

С точки зрения: вызывают ли нагрузки динамические усилия в конструкциях.
. статические
. квазистатические
. динамические (пульсационные, ударные, периодические и т.)

Расчетное и эксплуатационное значение нагрузки. При проектировании несущих конструкции для разных видов расчетов используют несколько значений одной и той же нагрузки. Как минимум Расчетное значение (повышенное) и нормативное значение (эксплуатационное).

Сочетание нагрузок. Каждая нагрузка для расчета элемента здания может и нагружать этот элемент и разгружать этот элемент. Поэтому в расчете используется определенное сочетание нагрузок, а именно такое, которое максимально нагружает рассчитываемый элемент здания.

Надо понимать, что величина нагрузки (как полезной, так и природной) носить случайный ("волатильный") характер. В нормативной документации определяется максимальная величина нагрузки превышение, которой маловероятно (хотя и возможно) в течении всего срока эксплуатации здания (70-150 лет).

Ввиду этого, для сооружений повышенного уровня ответственности (и, соответственно, большего срока эксплуатации) вводится повышающие коэффициенты, на которые умножаются "базовые" значения нагрузок. (коэффициент надежности по ответственности здания от 1,1 до 1,2).

Подробнее о значении тех или иных видов нагрузок см. список прилагаемой литературы.

ЛИТЕРАТУРА

1. Федеральный закон от 30 декабря 2009 г. N 384-ФЗ "Технический регламент о безопасности зданий и сооружений".

2. ГОСТ 27751-2014 Надежность строительных конструкций и оснований. Основные положения.

3. СП 20.13330.2016 Нагрузки и воздействия. Актуализированная редакция СНиП 2.01.07-85.

4. Нагрузки и воздействия на здания и сооружения. В.Н.Гордеев, А.И.Лантух-Лященко, В.А. Пашинский, А.В.Перельмутер, С.Ф.Пичугин; под. общей ред. А.В.Перельмутера. 3-е изд., перераб. - М.: Издательство С, 2009г.

→ Конструкции зданий

Нагрузки и воздействия на здания


Здания в целом и их отдельные части испытывают различные влияния от нагрузок (механических усилий) и воздействий, например, от изменения температуры наружного и внутреннего воздуха.

Под влиянием этих нагрузок и воздействий в материалах конструкций зданий возникают внутренние силы, величина которых, приходящаяся на единицу площади (интенсивность внутренних сил), называется напряжением. Напряжение чаще всего измеряется в кг/см2.

В результате напряжений в материалах и конструкциях могут возникать деформации, т. е. растяжение, сжатие, сдвиг, изгиб, кручение или более сложные деформации.

Деформации могут быть упругими, т. е. исчезающими после устранения воздействия, вызвавшего деформацию, и пластическими, т. е. остающимися после устранения воздействия.

Нагрузка может быть сосредоточенной, когда площадь давления ее мала сравнительно с размером тела, к которому она приложена, и может быть принята за точку, например, нагрузка от человека на пол.

Если площадь давления относительно велика, то нагрузка называется распределенной. Если нагрузка равномерно распределяется по площади, то она называется равномерно распределенной, например, вес слоя воды на водонаполненных плоских покрытиях. Характер приложения нагрузок может быть и другим, например, на стену подвала здания снаружи давление грунта по мере углубления увеличивается и выражается в виде треугольника с основанием на уровне пола подвала.

Временное сопротивление, или предел прочности материала, представляет собой напряжение в материале при различных видах деформации (растяжение, сжатие, кручение, изгиб), соответствующее максимальному (до разрушения образца) значению нагрузки, и измеряется отношением максимальной нагрузки к площади первоначального сечения образца (т. е. сечения недеформированного образца) обычно в кг/см2.

Основными характеристиками сопротивления материалов силовым воздействиям являются нормативные сопротивления (R”), устанавливаемые на основании испытаний.

Рис. 1. Схема распределения нагрузок в здании
а - план; б - разрез

Нормативные сопротивления могут быть главным образом пределами прочности при различных деформациях или пределами текучести материалов, представляющими собой напряжения при различных видах деформации, которые характеризуются тем, что остаточная (пластическая) деформация распределяется по всему рабочему объему образца при постоянстве действующей нагрузки. Нормативные сопротивления различных материалов и конструкций приведены в СНиП II-A. 10-62.

Возможное изменение сопротивлений материалов, изделий и конструкций в неблагоприятную сторону по сравнению с нормативными, вызываемое изменчивостью механических свойств (неоднородностью материалов), учитывается коэффициентами однородности (k), которые приведены в СНиП II-A 10-62.

Особенности работы материалов, конструктивных элементов и их соединений, оснований, а также конструкций и зданий в целом, не отражаемые в расчетах прямым путем, учитываются коэффициентами условий работы (т), приведенными в СНиП II-A. 10-62.

Сопротивления материалов, учитываемые расчетом, называются расчетными сопротивлениями ® и определяются как произведение нормативных сопротивлений (R1’) на коэффициенты однородности (/г), а в необходимых случаях и на коэффициенты условий работы (т).

Значения расчетных сопротивлений для определения условий расчета с учетом соответствующих коэффициентов условий работы устанавливаются нормами проектирования строительных конструкций и оснований зданий и сооружений различного назначения.

Наибольшие нагрузки и воздействия, не стесняющие и не нарушающие нормальных эксплуатационных условий и в возможных случаях контролируемые при эксплуатации и на производстве, называются нормативными.

Возможное отклонение нагрузок в неблагоприятную (большую или меньшую) сторону от их нормативных значений вследствие изменчивости нагрузок или отступлений от условий нормальной эксплуатации учитывается коэффициентами перегрузки (п), устанавливаемыми с учетом назначения зданий и сооружений и условий их эксплуатации.

Различные нормативные нагрузки на перекрытия, нагрузки от технологического оборудования, мостовых кранов, снеговые и ветровые нагрузки, а также коэффициенты перегрузки приведены в главе СНиП II-A. 11-62.

Учитываемые расчетом нагрузки, определяемые как произведение нормативных нагрузок на соответствующие коэффициенты перегрузки, называются расчетными нагрузками.

Все нагрузки и воздействия, вызывающие усилия (напряжения) в конструкциях и основаниях сооружений, учитываемые при проектировании, подразделяются на постоянные и временные. К постоянным относятся такие нагрузки и воздействия, которые могут иметь место при строительстве или эксплуатации сооружений постоянно, например: вес постоянных частей зданий, вес и давление грунтов, усилия предварительного напряжения, вес проводов на опорах линий электропередачи и антенных устройств сооружений связи и др.

Временными называются такие нагрузки или воздействия, которые в отдельные периоды строительства и эксплуатации сооружения могут отсутствовать.

В зависимости от длительности действия временные нагрузки и воздействия разделяются на:

а) временные длительно действующие, которые могут наблюдаться в период строительства и эксплуатации сооружения продолжительное время, например: нагрузки в помещениях книгохранилищ и библиотек, нагрузки на перекрытия складских помещений, вес стационарного оборудования, давление жидкостей и газов в резервуарах и трубопроводах и др.;

б) кратковременно действующие, которые могут наблюдаться в период строительства и эксплуатации сооружения лишь непродолжительное время, например: нагрузки от подвижного подъемно-транспортного оборудования, снеговые и ветровые нагрузки, давления волны и льда, температурные климатические воздействия и др.; »

в) особые, возникновение которых возможно в исключительных случаях, например: сейсмические воздействия в районах, подвергающихся землетрясениям, давления воды при катастрофических паводках, нагрузки, возникающие при разрушении части здания, и др.

При расчете строительных конструкций учитываются не все нагрузки и воздействия, оказывающие на них влияние, а только определенные сочетания нагрузок и воздействий (основные, дополнительные, особые сочетания), которые приведены в СНиП II-A. 10-62 и II-A. 11-62.

По характеру действия нагрузки делятся на статические (меняющиеся постепенно) и динамические (ударные, быстро и периодически изменяющиеся).

Динамические нагрузки и воздействия на строительные конструкции учитываются в соответствии с указаниями нормативных документов по проектированию и расчету несущих конструкций, подвергающихся динамическим нагрузкам и воздействиям. При отсутствии необходимых для этого данных динамическое влияние на конструкции допускается учитывать путем умножения расчетных нагрузок на коэффициенты динамичности.

Каждое здание или сооружение неизбежно испытывает воздействие тех или иных нагрузок. Это обстоятельство заставляет нас, расчетчиков, анализировать работу сооружения с позиции наиболее неблагоприятного их сочетания - чтобы даже в случае его проявления конструкция оставалась прочной, устойчивой, выносливой.

Для конструкции нагрузка является внешним фактором, который переводит ее из состояния покоя в напряженно-деформированное состояние. Сбор нагрузок не является конечной целью инженера - эти процедуры относятся к первому этапу алгоритма расчета конструкции (рассмотрен в этой статье).

Классификация нагрузок

В первую очередь, нагрузки классифицируют по времени воздействия на конструкцию:

  • постоянные нагрузки (действуют на протяжении всего жизненного цикла здания)
  • временные нагрузки (действуют время от времени, периодически или разово)

Сегментация нагрузок позволяет моделировать работу конструкции и выполнять соответствующие расчеты более гибко, с учетом вероятности появления той или иной нагрузки и вероятности их одновременного появления.

Единицы измерения и взаимные преобразования нагрузок

В сфере строительства сосредоточенные силовые нагрузки измеряются, как правило, в килоньютонах (кН), а моментные нагрузки - в кНм. Напомню, что согласно Международной системе единиц (СИ) сила измеряется в Ньютонах (Н), длина - в метрах (м).

Распределенные по объему нагрузки измеряются в кН/м3, по площади - в кН/м2, по длине - в кН/м.

Рисунок 1. Виды нагрузок:
1 - сосредоточенные силы; 2 - сосредоточенный момент; 3 - нагрузка на единицу объема;
4 - нагрузка, распределенная по площади; 5 - нагрузка, распределенная по длине

Любую сосредоточенную нагрузку \(F\) можно получить, зная объем элемента \(V\) и объемный вес его материала \(g\):

Получить нагрузку, распределенную по площади элемента, можно через его объемный вес и толщину \(t\) (размер, перпендикулярный плоскости нагрузки):

Аналогично, распределенная по длине нагрузка получается произведением объемного веса элемента \(g\) на толщину и ширину элемента (размеры в направлениях, перпендикулярных плоскости нагрузки):

где \(A\) - площадь поперечного сечения элемента, м 2 .

Кинематические воздействия измеряются в метрах (прогибы) или радианах (углы поворотов). Температурные нагрузки измеряются в градусах Цельсия (°C) или других единицах температуры, хотя могут задаваться и в единицах длины (м) или быть безразмерными (температурные расширения).

Для того чтобы здание было технически целесообразным, необходимо знать внешние воздействия, воспринимаемые зданием в целом и его отдельными элементами (рис. 11.2), которые можно разделить на два вида: силовые (нагрузки) и несиловые (воздействия окружающей среды).

Рис. 11.2.

1 – постоянные и временные вертикальные силовые воздействия; 2 – ветер; 3 – особые силовые воздействия (сейсмические или др.); 4 – вибрации; 5 – боковое давление грунта; 6 – давление грунта (отпор); 7 – грунтовая влага; 8 – шум; 9 – солнечная радиация; 10 – атмосферные осадки; 11 – состояние атмосферы (переменная температура и влажность, наличие химических примесей)

К силовым воздействиям относятся различные виды нагрузок:

  • постоянные – от собственной массы элементов здания, от давления грунта на его подземные элементы;
  • временные длительного действия – от массы стационарного оборудования, длительно хранящихся грузов, собственной массы перегородок, которые могут перемещаться при реконструкции;
  • кратковременные – от массы подвижного оборудования, людей, мебели, снега, от действия ветра на здание;
  • особые – от сейсмических воздействий, воздействий в результате аварии оборудования.

К несиловым воздействиям относятся:

  • температурные воздействия, влияющие на тепловой режим помещений, а также приводящие к температурным деформациям, которые уже являются силовыми воздействиями;
  • воздействия атмосферной и грунтовой влаги, а также воздействия паров влаги в воздухе помещения, вызывающие изменения свойств материалов, из которых выполнены конструкции здания;
  • движение воздуха, вызывающее его проникновение внутрь конструкции и помещения, изменяющее их влажностный и тепловой режим;
  • воздействие прямой солнечной радиации, вызывающее изменение физико-технических свойств поверхностных слоев материала конструкций, а также теплового и светового режима помещений;
  • воздействие агрессивных химических примесей, содержащихся в воздухе, которые в смеси с дождевой или грунтовой водой образуют кислоты, разрушающие материалы (коррозия);
  • биологические воздействия, вызываемые микроорганизмами или насекомыми, приводящие к разрушению конструкций и к ухудшению внутренней среды помещений;
  • воздействие звуковой энергии (шума) от источников внутри и вне здания, нарушающей нормальный акустический режим в помещении.

В соответствии с перечисленными нагрузками и воздействиями к зданиям и их конструкциям предъявляются следующие требования.

  • 1. Прочность – способность воспринимать нагрузки без разрушения.
  • 2. Устойчивость – способность конструкции сохранять равновесие при внешних и внутренних нагрузках.
  • 3. Жесткость – способность конструкций нести нагрузку с минимальными, заранее заданными нормами деформациями.
  • 4. Долговечность – способность здания и его конструкций выполнять свои функции и сохранять свои качества в течение предельного срока эксплуатации, на который они рассчитаны. Долговечность зависит от следующих факторов:
    • ползучести материалов, т.е. процесса малых непрерывных деформаций, протекающих в материалах в условиях длительного воздействия нагрузок;
    • морозостойкости материалов, т.е. способности влажного материала противостоять попеременному замораживанию и оттаиванию;
    • влагостойкости материалов, т.е. их способности противостоять разрушающему действию влаги (размягчению, набуханию, короблению, расслоению, растрескиванию);
    • коррозионной стойкости, т.е. способности материалов сопротивляться разрушению, вызванному химическими и электрохимическими процессами;
    • биостойкости, т.е. способности органических материалов противостоять разрушающему действию насекомых и микроорганизмов.

Долговечность определяется предельным сроком службы зданий. По этому признаку здания и сооружения разделяют на четыре степени:

  • 1–я – более 100 лет (основные конструкции, фундаменты, наружные стены и т.п. выполнены из материалов, обладающих высокой стойкостью против перечисленных видов воздействий);
  • 2–я – от 50 до 100 лет;
  • 3–я – от 20 до 50 лет (конструкции не обладают достаточной стойкостью, например дома с деревянными наружными стенами);
  • 4–я – до 20 лет (временные здания и сооружения).

Срок службы зависит также от условий, в которых находятся здание и сто конструкции, а также от качества их эксплуатации.

Важнейшим требованием к зданиям и сооружениям является требование пожарной безопасности . По степени возгораемости строительные материалы делятся на три группы:

  • несгораемые (не горят, не тлеют и не обугливаются под воздействием огня или высокой температуры);
  • трудносгораемые (под воздействием огня или высокой температуры с трудом воспламеняются, тлеют или обугливаются, но после удаления источника огня или высокой температуры горение и тление прекращаются). Обычно они защищаются снаружи несгораемыми материалами;
  • сгораемые (под воздействием открытого огня или высокой температуры горят, тлеют или обугливаются и после удаления источника огня или температуры продолжают гореть или тлеть).

Предел огнестойкости конструкций зданий определяется длительностью (в минутах) сопротивления действию огня до потери прочности или устойчивости, либо до образования сквозных трещин, либо до повышения температуры на поверхности конструкции со стороны, противоположной огню, в среднем более 140°С.

Здания или их отсеки между противопожарными стенками – брандмауэрами (рис. 11.3) в зависимости от степени возгораемости их конструкций разделяются на пять степеней огнестойкости. Степень огнестойкости зданий определяется по Строительным нормам и правилам (СНиП) 21-01-97* "Пожарная безопасность зданий и сооружений".

Рис. 11.3. Противопожарные стенки – брандмауэры (а) и зоны (б):

1 – противопожарная стенка; 2 – несгораемое перекрытие; 3 – несгораемый гребень

К I степени огнестойкости относятся здания, несущие и ограждающие конструкции которых выполнены из камня, бетона, кирпича с применением плитных или листовых несгораемых материалов. В зданиях II степени огнестойкости материалы также выполнены из несгораемых материалов, но имеют меньший предел огнестойкости. В зданиях III степени огнестойкости допускается применение сгораемых материалов для перегородок и перекрытий. В зданиях IV степени огнестойкости для всех конструкций допускается применение сгораемых материалов с минимальным пределом огнестойкости 15 мин, кроме стен лестничных клеток. К V степени огнестойкости относят временные здания. Предел огнестойкости их конструкций не нормируется. В зданиях III, IV и V степеней огнестойкости предусматривается рассечение их брандмауэрами и противопожарными перекрытиями на отсеки, ограничивающие площадь распространения пожара.

Факторы, воздействующие на здания и сооружения делят на:

Внешние воздействия (природные и искусственные: радиация, температура, воздушные потоки, осадки, газы, химические вещества, грозовые разряды, радиоволны, электромагнитные волны, шум, звуковые колебания, биологические вредители, давление грунта, морозное пучение, влага, сейсмические волны, блуждающие токи, вибрации);

Внутренние (технологические и функциональные: нагрузки постоянные и временные, длительные и кратковременные от собственного веса, оборудования и людей; технологические процессы: удары, вибрации, истирания, пролив жидкости; колебания температуры; влажность среды; биологические вредители).

Все эти факторы приводят к ускоренному механическому, физико-химичекому разрушению, в том числе и к коррозии, что приводит к снижению несущей способности отдельных конструкций и всего здания в целом.

Ниже приведена схема влияния внешних и внутренних факторов на здания и сооружения.

При эксплуатации сооружений различают: силовые воздействия нагрузок, агрессивное воздействие окружающей среды.

Агрессивная среда – среда, под влиянием которой изменяется структура свойства материалов, что приводит к снижению прочности.

Изменение структуры и разрушение называется коррозией. Вещество, способствующее разрушению и коррозии – стимулятор. Вещество, затрудняющее разрушение и коррозию – пассиваторы и ингибиторы коррозии.

Разрушение строительных материалов носит различный характер и зависит от взаимодействия химической, электрохимической, физической, физико-химической среды.

Агрессивные среды делятся на газовые, жидкие, твердые.

Газовые среды: это такие соединения как сероуглерод, углекислый, сернистый газ. Агрессивность данной среды характеризуется концентрацией газов, растворимостью в воде, влажностью и температурой.

Жидкие среды: это растворы кислот, щелочей, солей, масло, нефть, растворители. Коррозионные процессы в жидких средах протекают более интенсивно, чем в других.

Твердые среды: это пыль, грунты. Агрессивность данной среды оценивается дисперсностью, растворимостью в воде, гигроскопичностью, влажностью окружающей среды.

Характеристика агрессивной среды:

Сильно агрессивные – кислоты, щелочи, газы – агрессивные газы и жидкости в производственных помещениях;

Средне агрессивные – атмосферный воздух и вода с примесями – воздух с повышенной влажностью (более 75%);

Слабо агрессивные – чистый атмосферный воздух – незагрязненная вредными примесями вода;

Неагрессивные – чистый, сухой (влажностью до 50%) и теплый воздух – атмосферный воздух в сухих и теплых климатических районах.

Воздействие воздушной среды: в атмосфере содержится пыль, грязь, разрушающие здания и сооружения. Загрязнение воздуха в сочетании с влагой приводит к преждевременному износу, растрескиванию и разрушению строительной конструкции.

Вместе с тем в чистой и сухой атмосфере бетон и другие материалы могут сохраняться сотни лет. Наибольшими интенсивными загрязнителями воздуха являются продукты сгорания различных топлив, поэтому в городах, промышленных центрах металлические конструкции коррозируют в 2-4 раза быстрее, чем в сельской местности, где меньше сжигается угля и топлива.

К основным продуктам сгорания большинства видов топлива относятся CO 2 , SO 2 .

При растворении СО 2 в воде образуется углекислота. Это конечный продукт сгорания. Она разрушающе воздействует на бетон и другие строительные материалы. При растворении SO 2 в воде образуется серная кислота.

В дымах накапливается более 100 видов вредных соединений (HNO 3 , H 3 PO 4 , смолистые вещества, несгорающие частицы топлива). В приморских районах в атмосфере находится хлориды, соли серной кислоты, что при влажном воздухе увеличивает агрессивность воздействия на металлические конструкции.

Воздействие грунтовых вод: грунтовые воды представляют собой раствор с изменяющейся концентрацией и химическим составом, что отражается на степени агрессивности его воздействия. Вода в грунте постоянно воздействует с минералами и органическими веществами. Устойчивое обводнение подземных частей здания при перемещении грунтовых вод усиливает коррозию конструкции и выщелачивание извести в бетоне, снижает прочность основания.

Выделяют общекислотную, выщелачивающую, сульфатную, магнезиальную, углекислотную агрессивность грунтовых вод.

Наиболее существенное воздействие оказывают следующие факторы:

· Воздействие влаги: как показал опыт эксплуатации зданий, наибольшее влияние на износ конструкций оказывает влага. Поскольку фундаменты и стены старых реконструированных зданий выполнены в основном из разнородных каменных материалов (известняк, красный кирпич, известковые и цементные растворы) с пористо-капиллярной структурой, при контакте с водой они интенсивно увлажняются, зачастую изменяют свои свойства и в экстремальных случаях разрушаются.

Основным источником увлажнения стен и фундаментов является капиллярный подсос, который приводит к повреждениям конструкций в процессе эксплуатации: разрушению материалов в результате промерзания; образованию трещин из-за набухания и усадки; потере теплоизоляционных свойств; разрушению конструкций под воздействием агрессивных химических веществ, растворенных в воде; развитию микроорганизмов, вызывающих биологическую коррозию материалов.

Процесс санации зданий и сооружений не может быть ограничен обработкой их биоцидным препаратом. Должна быть реализована комплексная программа мероприятий, состоящая из нескольких стадий, а именно:

Диагностика (анализ тепловлажностного режима, ренгеноскопический и биологический анализ продуктов коррозии);

Сушка (при необходимости) помещений, если речь идет о подземных сооружениях, например, подвалах;

Устройство отсечной горизонтальной гидроизоляции (при наличии подсоса почвенной влаги);

Очистка, при необходимости, внутренних поверхностей от высолов и продуктов биологической коррозии;

Лечащая обработка противосолевыми и биоцидными препаратами;

Заделка трещин и протечек специальными гидропломбирующими составами и последующая обработка поверхностей защитными гидроизолирующими препаратами;

Производство отделочных работ.

· Воздействие атмосферных осадков: атмосферные осадки, проникая в грунт, превращаются либо в парообразную, либо в гигроскопическую влагу, удерживающуюся в виде молекул на частицах грунта молекулярными илами, либо в пленочную, поверх молекулярной, либо в гравитационную, свободно перемещающуюся в грунте под действием сил тяжести. Гравитационная влага может доходить до грунтовой воды и, сливаясь с ней, повышать ее уровень. Грунтовая вода, в свою очередь, вследствие капиллярного поднятия перемещается вверх на значительную высоту и обводняет верхние слои грунта. В некоторых условиях капиллярная и грунтовая воды могут сливаться и устойчиво обводнять подземные части сооружений, в результате чего усиливается коррозия конструкций, снижается прочность оснований.

· Воздействие отрицательной температуры: некоторые конструкции, например, цокольные части, находятся в зоне переменного увлажнения и периодического замораживания. Отрицательная температура (если она ниже расчетной или не приняты специальные меры для защиты конструкций от увлажнения), приводящая к замерзанию влаги в конструкциях и грунтах оснований, разрушающе действует на здания. При замерзании воды в порах материала объем ее увеличивается, что создает внутренние напряжения, которые все возрастают вследствие сжатия массы самого материала под влиянием охлаждения. Давление льда в замкнутых порах весьма велико – до 20 Па. Разрушение конструкций в результате замораживания происходит только при полном (критическом) влагосодержании, насыщении материала. Вода начинает замерзать у поверхности конструкций, а поэтому разрушение их под воздействием отрицательной температуры начинается с поверхности, особенно с углов и ребер. Максимальный объем льда получается при температуре – 22С о, когда вся вода превращается в лед. Интенсивность замерзания зависит от объема пор. Камни и бетоны с пористостью до 15% выдерживают 100-300 циклов замораживания. Уменьшение пористости, а следовательно, и количество влаги повышает морозостойкость конструкций. Из сказанного следует, что при замерзании разрушаются те конструкции, которые увлажняются. Защитить конструкции от разрушения при отрицательных температурах – это прежде всего защитить их от увлажнения. Промерзание грунтов в основаниях опасно для зданий, построенных на глинистых и пылеватых грунтах, мелко- и средне-зернистых песках, в которых вода по капиллярам и порам поднимается над уровнем грунтовых вод и находится в связанном виде. Повреждения зданий из-за промерзания и выпучивания оснований могут произойти после многих лет и эксплуатации, если будут допущены срезка грунта вокруг них, увлажнение оснований и действие факторов, способствующих их промерзанию.

· Возведение технологических процессов: каждое здание и сооружение проектируется и строится с учетом взаимодействия предусматриваемых в нем процессов; однако из-за неодинаковой стойкости и долговечности материалов конструкций и различного влияния на них среды износ их неравномерен. В первую очередь разрушаются защитные покрытия стен и полы, окна, двери, кровля, затем стены, каркас и фундаменты. Сжатые элементы больших сечений, работающие при статических нагрузках, изнашиваются медленнее, чем изгибаемые и растянутые, тонкостенные, которые работают при динамической нагрузке, в условиях высокой влажности и высокой температуры. Износ конструкций под действием истирания – абразивный износ полов, стен, углов колонн, ступеней лестниц и других конструкций бывает весьма интенсивным и поэтому сильно влияющим на их долговечность. Он происходит под действием, как природных сил (ветров, песчаных бурь), так и вследствие технологических и функциональных процессов, например из-за интенсивного перемещения больших людских потоков в зданиях общественного назначения.

Описание объекта

Таблица 1.1

Общая характеристика Насосная станция
Год постройки
Общая площадь, м 2 -площадь застройки, м 2 -площадь помещений, м 2
Высота здания, м 3,9
Строительный объем, м 3 588,6
Этажность
Строительные характеристики
Фундаменты Монолитный железобетон
Стены Кирпичные
Перекрытия Железобетонные
Кровля Кровля из рулонных материалов
Полы Цементные
Дверные проемы Деревянные
Внутренняя отделка Штукатурка
Привлекательность (внешний вид) Удовлетворительный внешний вид
Фактический возраст здания
Нормативный срок службы здания
Остаточный срок эксплуатации
Системы инженерного обеспечения
Теплоснабжение Центральное
Горячее водоснабжение Центральное
Канализация Центральная
Питьевое водоснабжение Центральное
Электроснабжение Центральное
Телефон -
Радио -
Сигнализация: -охранная -пожарная наличие наличие
Внешнее благоустройство
Озеленение Зеленые насаждения: газон, кустарники
Подъездные пути Асфальтированная дорога, удовлетворительное состояние


просмотров