Принцип работы и устройство кожухотрубных теплообменников. Кожухотрубчатые теплообменные аппараты

Принцип работы и устройство кожухотрубных теплообменников. Кожухотрубчатые теплообменные аппараты

Конструкции современных рекуперативных теплообменных аппаратов поверхностного типа непрерывного действия весьма разнообразны. Рассмотрим наиболее характер­ные.

Кожухотрубчатые теплообменники представля­ют собой аппараты, выполненные из пучков труб, скреплен­ных при помощи трубных решеток (досок) и ограниченных кожухами и крышками с патрубками. Трубное и межтрубное пространства в аппарате разобщены, а каждое из них может быть разделено перегородками на несколько ходов. Перегород­ки предназначены для увеличения скорости и, следовательно, коэффициента теплоотдачи теплоносителей. Теплообменники этого типа предназначаются для теплообмена между различны­ми жидкостями, между жидкостями и паром, между жидкостя­ми и газами. Типовые конструкции кожухотрубчатых теплооб­менников применяются в случаях, когда требуется большая поверхность теплообмена.

При нагреве жидкости паром в большинстве случаев пар вво­дится в межтрубное пространство, а нагреваемая жидкость проте­кает по трубкам. В кожухотрубчатых теплообменниках проходное сечение межтрубного пространства в 2... 3 раза больше проходно­го сечения внутри труб. Поэтому при одинаковых расходах тепло­носителей, имеющих одинаковое агрегатное состояние, скорости теплоносителя в межтрубном пространстве более низкие и коэф­фициенты теплоотдачи на поверхности межтрубного простран­ства невысоки, что снижает коэффициент теплопередачи в аппа­рате. На рис. 4.5 показаны различные типы кожухотрубчатых теп­лообменников.

Теплопередающая поверхность аппаратов может составлять от нескольких сотен квадратных сантиметров до нескольких тысяч квадратных метров. Так, конденсатор современной паровой тур­бины мощностью 300 МВт имеет более 20 тыс. труб с общей по­верхностью теплообмена около 15 тыс. м 2 .

Корпус (кожух) кожухотрубчатого теплообменника представ­ляет собой цилиндр, сваренный из одного или нескольких сталь­ных листов. Кожухи различаются, главным образом, способом со­единения с трубной решеткой и крышками. Толщина стенки ко­жуха определяется максимальным давлением рабочей среды и ди­аметром аппарата, но не меньше 4 мм. К цилиндрическим кром­кам кожуха привариваются фланцы для соединения с крышками или днищами. На наружной поверхности кожуха привариваются патрубки и опоры аппарата.

Трубки кожухотрубчатых аппаратов изготовляют прямыми или изогнутыми (U-образными) диаметром от 12 до 57 мм.

Материал трубок выбирается в зависимости от среды, омыва­ющей ее поверхность. Применяются трубки из стали, латуни и специальных сплавов.

Трубные решетки служат для закрепления в них труб при по­мощи развальцовки, заварки, запайки или сальниковых соедине­ний. Трубные решетки зажимаются болтами между фланцами ко­жуха и крышки или привариваются к кожуху, либо соединяются болтами только с фланцами свободной камеры (см. рис. 4.5).


Рис. 4.5. Типы кожухотрубчатых теплообменников:

а - одноходовый; б - многоходовый; в - пленочный; г - с линзовым компен­сатором; д - с плавающей головкой закрытого типа; е - с плавающей головкой открытого типа; ж - с сальниковым компенсатором; з - с U-образными труб­ками; 1 - кожух; 2 - выходная камера; 3 - трубная решетка; 4 - трубы; 5 - входная камера; 6 - продольная перегородка; 7 - камера; 8 - перегородки в камере; 9 - линзовый компенсатор; 10 - плавающая головка; 11 –сальник; 12 - U-образные трубы; I, II - теплоносители

Крышки кожухотрубчатых аппаратов имеют форму плоских плит, конусов, сфер, а чаще всего выпуклых или вогнутых эллип­сов.

Секционные теплообменники (рис. 4.6) представля­ют собой разновидность трубчатых аппаратов и состоят из несколь­ких последовательно соединенных секций, каждая из которых пред­ставляет собой кожухотрубчатый теплообменник с малым числом труб и кожухом небольшого диаметра.

В секционных теплообменниках при одинаковых расходах жид­костей скорости движения теплоносителей в трубах и межтруб­ном пространстве почти равновелики, что обеспечивает повы­шенные коэффициенты теплопередачи по сравнению с обыч­ными трубчатыми теплообменниками. Простейшим из этого типа является теплообменник «труба в трубе» (в наружную трубу встав­лена труба меньшего диаметра). Все элементы аппарата соедине­ны сваркой.

Рис. 4.6. Секционные теплообменники:

а - водяной подогреватель теплосети; б - типа «труба в трубе»; 1 - линзовый компенсатор; 2 - трубки; 3 - трубная решетка с фланцевым соединением с кожухом; 4 - «калач»; 5 - соединительные патрубки

Недостатками секционных теплообменников являются: высо­кая стоимость единицы поверхности нагрева, так как деление ее на секции вызывает увеличение количества наиболее дорогих эле­ментов аппарата - трубных решеток, фланцевых соединений, переходных камер, компенсаторов и т.д.; значительные гидрав­лические сопротивления вследствие различных поворотов и пере­ходов вызывают повышенный расход электроэнергии на привод прокачивающего теплоноситель насоса.

Кожухи серийных секционных теплообменников изготовляют из труб длиной до 4 м, внутренним диаметром от 50 до 305 мм. Число труб в секции составляет от 4 до 151, поверхность нагрева от 0,75 до 26 м 2 , трубы латунные диаметром 16/14 мм. Отношение поверхно­сти нагрева к объему теплообменника достигает 80 м 2 /м 3 , а удель­ный конструкционный вес составляет 50...80 кг/м 2 поверхности нагрева.

Спиральные теплообменники (рис. 4.7) состоят из двух спиральных каналов прямоугольного сечения, по которым движутся теплоносители I и II. Каналы образуются металлически­ми листами, которые служат поверхностью теплообмена. Внут­ренние концы спиралей соединены разделительной перегородкой. Для обеспечения жесткости конструкции и фиксирования рас­стояния между спиралями приваривают бобышки. С торцов спи­рали закрывают крышками и стягивают болтами.

Горизонтальные спиральные теплообменники применяют для теплообмена между двумя жидкостями. Для теплообмена между конденсирующимся паром и жидкостью используют вертикаль­ные спиральные теплообменники. Такие теплообменники приме­няют в качестве конденсаторов и паровых подогревателей для жид­кости.

Рис. 4.7. Типы спиральных теплообменников:

а - горизонтальный; б - вертикальный; 1, 3 - листы; 2 - разделительная перегородка; 4 - крышки; I, II - теплоносители

К достоинствам спиральных теплообменников можно отнести компактность (большая поверхность теплообмена в единице объ­ема, чем у многоходовых трубчатых теплообменников) при оди­наковых коэффициентах теплопередачи и меньшее гидравличес­кое сопротивление для прохода теплоносителей. К недостаткам - сложность изготовления и ремонта и пригодность работы под из­быточным давлении не свыше 1,0 МПа.

Пластинчатые теплообменники имеют плоские по­верхности теплообмена. Обычно такие теплообменники применя­ют для теплоносителей, коэффициенты теплоотдачи которых оди­наковы.

Недостатками изготовлявшихся до недавнего времени пластин­чатых теплообменников являлись малая герметичность и незначи­тельные перепады давлений между теплоносителями.

В последнее время изготовляют компактные разборные плас­тинчатые теплообменники, состоящие из штампованных метал­лических листов с внешними выступами, расположенными в ко­ридорном или шахматном порядке. Такие конструкции приме­няются для теплообмена между жидкостями и газами и работают при перепадах давлений до 12 МПа. На рис. 4.8 представлено не­сколько конструкций теплообменников такого типа. Благодаря незначительному расстоянию между пластинами (6...8 мм) такие теплообменники весьма компактны. Удельная поверхность нагре­ва F/V составляет 200...300 м 2 /м 3 . Поэтому пластинчатые теплооб­менники в ряде случаев вытесняют трубчатые и спиральные.

Но такой конструкции присущи следующие недостат­ки: трудность чистки внутри каналов, ремонта, частичной заме­ны поверхности теплообмена, а также невозможность изготовле­ния пластинчатых теплообменников из чугуна и хрупких матери­алов и длительная эксплуатация.

В настоящее время в системах теплоснабжения жилищно-ком­мунальных хозяйств и ряда промышленных предприятий в каче­стве подогревателей горячего водоснабжения (ГВС) и отопления устанавливаются пластинчатые теплообменники (рис. 4.8) вместо ранее используемых для этих целей традиционных секционных кожухотрубных подогревателей. Это связано с целым рядом обстоя­тельств и преимуществ:

1. Коэффициент теплопередачи в пластинчатых теплообменни­ках в 3...4 раза больше, чем в кожухотрубных, благодаря специальному гофрированному профилю проточной части пластины, обеспечивающему высокую степень турбулизации потоков тепло­носителей. Соответственно в 3...4 раза поверхность пластинчатых теплообменников меньше, чем кожухотрубных.

Рис. 4.8. Пластинчатый водоводяной теплообменник «Теплотекс»:

а - общий вид; б - схема движения теплоносителей

2. Пластинчатые теплообменники имеют малую металлоем­кость, очень компактны, их можно установить в небольшом по­мещении.

3. В отличие от кожухотрубных они легко разбираются и быстро чистятся. При этом не требуется демонтаж подводящих трубопро­водов.

4. В пластинчатом теплообменнике можно легко и быстро заме­нить пластину или прокладку, а также увеличить его поверхность, если со временем возрастет тепловая нагрузка.

Секционные кожухотрубные теплообменники трудно точно рас­считать на требуемую тепловую производительность и допусти­мые потери напора, так как поверхность одной секции велика и Достигает 28 м 2 (при D y = 300 мм).

Пластинчатые теплообменники набираются из отдельных пла­стин, поверхность нагрева которых, как правило, не превышает одного метра. Это обстоятельство в сочетании с оптимально выб­ранным типом пластины позволяет точно без лишнего запаса выб­рать теплопередающую поверхность теплообменника.

По своим техническим характеристикам теплообменники «Теплотекс» являются разборными и одноходовыми; материал пласти­ны - сталь ALSL 316; толщина пластины - 0,5 ...0,6 мм; матерная прокладки - резина EPDM; максимальная рабочая температуря теплоносителя - 150 °С; рабочее давление - 1... 2,5 МПа; расходы воды в зависимости от типа теплообменника от 2 до 100 кг/с; поверхность - от 1,5 до 373 м 2 .

Ребристые теплообменники применяются в тех случаях, когда коэффициент теплоотдачи для одного из теплоно­сителей значительно ниже, чем для второго. Поверхность теп­лообмена со стороны теплоносителя с низким значением α уве­личивают по сравнению с поверхностью теплообмена со стороны другого теплоносителя. В таких аппаратах поверхность теплообмена имеет на одной стороне ребра различной формы (рис. 4.9). Как видно из рисунка, ребристые теплообменники изготовляют самых различных конструкций. При этом ребра выполняю» поперечными, продольными, в виде игл, спиралей, из витой проволоки и т.д.

Рис. 4.9. Типы ребристых теплообмен­ников:

а - пластинчатый; б - чугунная труба с круглыми ребрами; в - трубка со спираль­ным оребрением; г - чугунная труба с внут­ренним оребрением; д - плавниковое оребрение трубок; е - чугунная труба с двусто­ронним игольчатым оребрением; ж - про­волочное (биспиральное) оребрение трубок; з - продольное оребрение труб; и - много­ребристая трубка

Теплообменником называется устройство, в котором производится передача тепла между теплоносителями.

Принцип действия

Кожухотрубные теплообменники относятся к типу рекуперативных, где среды разделены стенками. Работа их заключается в процессах теплообмена между жидкостями. При этом может происходить изменение их агрегатного состояния. Теплообмен также может производиться между жидкостью и паром или газом.

Преимущества и недостатки

Кожухотрубные теплообменники распространены, благодаря следующим положительным качествам:

  • стойкость к механическим воздействиям и гидроударам;
  • невысокие требования к чистоте сред;
  • высокая надежность и долговечность;
  • широкий модельный ряд;
  • возможность применения с разными средами.

К недостаткам данного типа моделей относятся:

  • малая величина коэффициента теплопередачи;
  • значительные габариты и высокая металлоемкость;
  • высокая цена из-за повышенной металлоемкости;
  • необходимость применения устройств с большим запасом в связи с заглушкой поврежденных трубок при ремонтах;
  • колебания уровня конденсата нелинейно изменяет теплообмен в устройствах горизонтального исполнения.

Кожухотрубные теплообменники обладают низким коэффициентом теплопередачи. Отчасти это связано с тем, что пространство корпуса в 2 раза больше общего поперечного сечения трубок. Применение направляющих перегородок дает возможность повысить скорость жидкости и улучшить теплообмен.

В межтрубном пространстве проходит теплоноситель, а по трубкам подается нагреваемая среда. Аналогичным образом она может также охлаждаться. Эффективность теплообмена обеспечивается за счет увеличения числа трубок или созданием поперечного тока внешнего теплоносителя.

Компенсация температурных удлинений

Температура теплоносителей разная и в результате происходит тепловая деформация элементов конструкции. Кожухотрубный теплообменник выполняется с компенсацией удлинения или без нее. Жесткое крепление трубок допускается при разности температуры между ним и корпусом до 25-30 0 С. Если она превышает эти пределы, применяются следующие температурные компенсаторы.

  1. "Плавающая" головка - одна из решеток не имеет соединение с кожухом и свободно перемещается в осевом направлении при удлинении трубок. Конструкция является наиболее надежной.
  2. На корпусе выполнен линзовый компенсатор в виде гофра, который может расширяться или сжиматься.
  3. Сальниковый компенсатор установлен на верхнем днище, который имеет возможность перемещаться вместе с решеткой при температурном расширении.
  4. U-образные трубы свободно удлиняются в среде теплоносителя. Недостатком является сложность изготовления.

Типы кожухотрубных теплообменников

Конструктивное исполнение аппаратов отличается простотой, на них всегда есть спрос. Цилиндрическим корпусом служит стальной кожух большого диаметра. На его кромках выполнены фланцы, на которых установлены крышки. В трубных досках внутри корпуса закреплены сваркой или развальцовкой трубные пучки.

Материалом для трубок служит сталь, медь, латунь, титан. Стальные доски крепят между фланцами или приваривают к кожуху. Между ними и корпусом внутри образуются камеры, через которые проходят теплоносители. Также там имеются перегородки, изменяющие движение жидкостей, проходящие через кожухотрубные теплообменники. Конструкция позволяет изменить скорость и направление потока, проходящего между трубками, тем самым увеличив интенсивность теплообмена.

Устройства могут располагаться в пространстве вертикально, горизонтально или с наклоном.

Разные типы кожухотрубных теплообменников отличаются расположением перегородок и устройством компенсаторов температурных удлинений. При малом числе трубок в пучке кожух имеет небольшой диаметр, и поверхности теплообмена получаются небольшими. Для их увеличения теплообменники последовательно соединяются в секции. Самой простой является конструкция "труба в трубе", которую часто изготавливают самостоятельно. Для этого необходимо правильно подобрать диаметры внутренней и наружной трубы и скорость потоков теплоносителей. Удобство чистки и ремонта обеспечивается за счет колен, которыми соединяются соседние секции. Эту конструкцию часто используют как пароводяные кожухотрубные теплообменники.

Спиральные теплообменные аппараты представляют собой каналы, выполненные прямоугольной формы и сваренные из листов, по которым перемещаются теплоносители. Достоинством является большая поверхность контакта с жидкостями, а недостатком - низкое допускаемое давление.

Новые конструкции теплообменников

В наше время начинает развиваться производство компактных теплообменников с рельефными поверхностями и интенсивным движением жидкостей. В результате их технические характеристики приближаются к пластинчатым аппаратам. Но производство последних также развивается, и догнать их сложно. Замена кожухотрубных теплообменников на пластинчатые целесообразна, благодаря следующим преимуществам:

К недостатку относится быстрая загрязненность пластин из-за малой величины зазоров между ними. Если хорошо фильтровать теплоносители, теплообменный аппарат будет работать долго. Мелкие частицы не удерживаются на полированных пластинах, а турбулизация жидкостей также предупреждает осаждение загрязнений.

Повышение интенсивности теплообмена аппаратов

Специалисты постоянно создают новые кожухотрубные теплообменники. Технические характеристики улучшаются за счет применения следующих способов:


Турбулизация потоков жидкостей значительно уменьшает солеотложение на стенках труб. За счет этого не требуются мероприятия по их очистке, которые необходимы для гладких поверхностей.

Производство кожухотрубных теплообменников с внедрением новых методов позволяет повысить в 2-3 раза эффективность теплоотдачи.

Учитывая дополнительные энергозатраты и стоимость, производственники чаще стараются заменить теплообменник на пластинчатый. По сравнению с обычными кожухотрубными они лучше по теплопередаче на 20-30 %. Это больше связано с освоением производства новой техники, которое пока идет со сложностями.

Эксплуатация теплообменников

Аппараты нуждаются в периодическом осмотре и контроле за работой. Параметры, например, температура, измеряются по их значениям на входе и выходе. Если эффективность работы снизилась, нужно проверить состояние поверхностей. Особенно влияют солевые отложения на термодинамические параметры теплообменников, где малая величина зазоров. Очистка поверхностей производится химическим способом, а также за счет применения ультразвуковых колебаний и турбулизации потоков теплоносителей.

Ремонт кожухотрубных аппаратов в основном заключается в запаивании прохудившихся трубок, что ухудшает их технические характеристики.

Заключение

Оптимальные кожухотрубные теплообменники конкурируют с пластинчатыми и могут применяться во многих областях техники. Новые конструкции имеют значительно меньшие габариты и металлоемкость, что позволяет снизить рабочие площади и уменьшить затраты на создание и эксплуатацию.

Содержание раздела

Кожухотрубчатый теплообменный аппарат (рис. 4.9) состоит из кожуха и пучка труб, закрепленных в трубных решетках (досках) для создания проточных каналов. В межтрубное пространство подают, как правило, менее, а в трубы - более загрязненный теплоноситель. Крышки распределительных камер и кожух, замыкающие межтрубное пространство, снабжены штуцерами для подвода и отвода теплоносителей.

Рис.4.9. Кожухотрубчатые теплообменные аппараты непрерывного действия:

а – одноходовой с жестко закрепленными решетками; б – с концентрическими; в – с сегментными перегородками в межтрубном пространстве; г – с температурными компенсаторами на корпусе; д – с плавающей нижней головкой; е – с U-образными трубами; ж – с сальниковым уплотнением на верхней плавающей головке; 1 – корпус или кожух; 2 – трубные решетки; 3 – трубы; 4 – днища и крышки распределительных камер; 5, 6 – фланцы; 7 – опоры

Кожухотрубчатые теплообменные аппараты применяют для нагрева и охлаждения жидкостей и газов, а также для испарения и конденсации веществ в различных технологических процессах. В частности, их используют как регенеративные подогреватели питательной воды, в системах водоподготовки, в качестве маслоохладителей.

При заданном расходе теплоносителя G , кг/с, и выбранной скорости его движения w, м/с, в трубах их количество в одном ходе теплообменника

n = 4G /(w r p d 2).

Площадь поверхности теплообмена

F = p d ср l n z,

где l - рабочая длина труб; d cp - их расчетный диаметр, равный

d cp = 0,5 (d н + d в);

z - число ходов трубного пространства. Длину теплообменных труб рекомендуется принимать 1000, 1500, 2000, 3000, 4000, 6000 и 9000 мм. В кожухотрубчатых теплообменниках с площадью поверхности до 300 м 2 - не более 4000 мм .

Размещение труб в трубных решетках производится по вершинам равносторонних треугольников, по концентрическим окружностям или по вершинам квадратов. Наиболее распространенным способом является первый вариант (рис. 4.10). Количество труб в аппарате в зависимости от их диаметра, диаметра корпуса и числа ходов в трубном пространстве указано в табл. 4.9 [ 7, 8].

Рис.4.10. Размещение труб в трубной решетке:

а – по концентрическим окружностям; б – по вершинам равносторонних треугольников; в – шахматное; г – коридорное

Таблица 4.9. Количество труб в кожухотрубчатых теплообменниках при размещении их по вершинам равносторонних треугольников [ 7, 8 ]

Диаметр аппарата, Диаметр труб (наружный), мм
20 25 38
одноходовых двухходовых одноходовых двухходовых одноходовых
159 19 13
273 61 - 42 - -
325 91 80 61 52 -
400 181 166 111 100 -
600 393 (423) 374 (404) 261 (279) 244 (262) 111 (121)
800 729 (771) 702 (744) 473 (507) 450 (484) 197 (211)
1000 1177 (1247) 1142 (1212) 783 (813) 754 (784) 331 (361)
1200 1705 (1799) 1662 (1756) 1125 (1175) 1090 (1140) 473 (511)
1400 2369 (2501) 2318 (2450) 1549 (1629) 1508 (1588) 655 (711)

П р и м е ч а н и е. В скобках указано количество труб для теплообменников при размещении без отбойников, когда трубы добавлены с двух сторон большого шестиугольника.

Диаметры и шаги отверстий в трубных решетках и перегородках теплообменников, при расположении труб по вершинам равностороннего треугольника, определяют по наружному диаметру труб (табл. 4.10).

Таблица 4.10. Диаметры отверстий в трубных решетках и перегородках кожухотрубчатых теплообменников [ 8 ]

Наружный диаметр Диаметры отверстий d, mm Шаг между отверстиями, мм
в решетке в перегородке
16 16,3 17,0 22
20 20,4 20,8 26
25 25,4 26,0 32
38 38,7 39,0 48
75 57,8 60,0 70

При развальцовке труб шаг s = (l,3 ¸ 1,6) d н, при сварке s = l,25 d н. Минимальная толщина: для стальной решетки d р мин = 5 + 0,125 d н, медной d р мин = =10 + 0,2 d н Толщина решетки проверяется расчетом на прочность с учетом ослабления ее отверстиями и способа размещения труб.

Внутренний диаметр кожуха одноходового теплообменника D в = s (b – 1) + 4d н или D в = l,l s \(\sqrt{n}\) ; многоходового - D в = l,l s \(\sqrt{n/\psi }\) , где b – число труб на диагонали большого шестиугольника; \(\psi\) – коэффициент заполнения трубной решетки, равный 0,6 - 0,8.

Расчетное значение внутреннего диаметра кожуха округляют до ближайшего из следующего ряда: 400, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000, 2200, 2400, 2600, 2800, 3000, 3200, 3400, 3600, 3800 и 4000 мм. Цилиндрические кожухи аппаратов можно изготавливать из стальных труб с наружным диаметром 159, 219, 273, 325, 377, 426, 480, 530, 720, 820, 920 и 1020 мм.

Для теплообменников без перегородок площадь живого сечения межтрубного пространства \({f}_{\text{мт}}=\frac{\pi }{4}\left({D}_{в}^{2}-{\text{nd}}_{н}^{2}z\right)\text{.}\)

Если f мт > f , где f - расчетное значение живого сечения межтрубного пространства, то межтрубное пространство разделяют перегородками на число ходов i = f мт / f . Число ходов в межтрубном пространстве рекомендуется принимать из ряда 1, 2, 3, 4, 6. Для теплообменника, у которого межтрубное пространство разделено на i ходов поперечными сегментными перегородками, приведенное сечение, по площади которого рассчитывается (уточняется) скорость теплоносителя в межтрубном пространстве,

\({f}_{\text{пр}}={f}_{\text{мт}}{l}_{с}\phi /{L}_{\text{экв}},\)

где l c – расстояние между сегментными перегородками; j – коэффициент, учитывающий сужение живого сечения межтрубного пространства\[\phi =\frac{1-{d}_{н}/s}{1-\mathrm{0,9}({d}_{н}/s{)}^{2}};\]

L экв = l c + D в – 4 b /3 эквивалентная длина пути теплоносителя; b – расстояние от края сегментной перегородки до корпуса аппарата, b = (0,2 ¸ 0,4) D в.

Кожухотрубчатые теплообменные аппараты общего назначения изготовляют из углеродистой или нержавеющей стали с площадью поверхности теплообмена от 1 до 2000 м 2 на условное давление до 6,4 МПа. Конструктивно они подразделяются на типы, показанные на рис. 4.9. Основные параметры и размеры кожухотрубчатых теплообменных аппаратов приведены в табл. 4.11 – 4.16.

Кожухотрубчатые теплообменные аппараты типа ТН (c неподвижными решетками) и ТК (с линзовыми компенсаторами на кожухе) изготовляют горизонтальными и вертикальными из углеродистой стали (рис. 4.11). Теплообменники типа ТН применяют для нагрева и охлаждения жидких и газообразных сред с температурой от 30°С до + 350°С на условное давление от 0,6 до 6,4 МПа.

Рис.4.11. Блок из двух кожухотрубчатых теплообменников

При разности температур между теплоносителями свыше 50°С рекомендуется применять теплообменники коллекторного типа, рассчитанные на рабочее давление не более 2,5 МПа .

Теплообменники типа ТН, ТК и ТП, изготовленные из углеродистой стали и предназначенные для взрывоопасной или токсичной среды, в зависимости от температуры должны допускаться в работу при пониженном давлении согласно [ 8 ]. При температурах теплоносителя более 400 о С необходимо применять теплообменники, изготовленные из легированной стали.

Основные параметры теплообменников сварной конструкции приведены в табл. 4.13 и 4.14.

Трубы для теплообменников выбирают из условий работы и агрессивности среды. Для стандартных теплообменников применяют трубы из углеродистой стали 10 или 20, коррозионностойкой стали ОХ18Н10Т и латуни ЛОМш 70-1-0,06. Размещение труб в решетках выполняют по вершинам равносторонних треугольников.

Таблица 4.11. Технические характеристики водо-водяных подогревателей, ГОСТ 27590-88 и ОСТ 34-588-68

Обозначение Наружный и внутренний диа­метры корпуса D н /D вн, мм Длина подогре­вателя с калачами Число тру­бок Площадь поверхности

нагрева F, м 2

Площадь живого сечения, м 2
трубок межтрубного пространства f мт
01 ОСТ 34-558-68

02 ОСТ 34-558-68

57/50 2220 4 0,37 0,00062 0,00116
03 ОСТ 34-558-68

04 ОСТ 34-558-68

76/69 2300 7 0,65 0,00108 0,00233
05 ОСТ 34-558-68

06 ОСТ 34-558-68

89/82 2340 12 1,11 0,00185 0,00287
07 ОСТ 34-558-68

08 ОСТ 34-558-68

114/106 2424 19 1,76 0,00293 0,005
09 ОСТ 34-558-68

10 ОСТ 34-558-68

168/158 2620 37 3,4 0,0067 0,0122
11 ОСТ 34-558-68

12 ОСТ 34-558-68

219/207 2832 64 5,89 0,00985 0,02079
13 ОСТ 34-558-68

14 ОСТ 34-558-68

273/259 3032 109 10 0,01679 0,03077
15 ОСТ 34-558-68

16 ОСТ 34-558-68

325/309 3232 151 13,8 0,02325 0,01464
17 ОСТ 34-558-68

18 ОСТ 34-558-68

377/359 3430 216 19,8 0,03325 0,05781
19 ОСТ 34-558-68

20 ОСТ 34-558-68

426/408 3624 283 25,8 0,04356 0,07191
21 ОСТ 34-558-68

22 ОСТ 34-558-68

530/512 3552 450 41 0,06927 0,11544
26 ОСТ 34-588-68

27 ОСТ 34-583-68

57/50 2220 4 0,36 0,00062 0,00116
28 ОСТ 34-588-68

29 ОСТ 34-588-68

76/69 2300 7 0,64 0,00108 0,00233
30 ОСТ 34-588-68

31 ОСТ 34-588-68

89/82 2340 12 1,1 0,00185 0,00287
32 ОСТ 34-588-68

33 ОСТ 34-588-68

114/106 2424 19 1,74 0,00293 0,005
34 ОСТ 34-588-68

35 ОСТ 34-588-68

168/158 2620 37 3,39 0,0057 0,0122
36 ОСТ 34-588-68

37 ОСТ 34-588-68

219/207 2832 64 5,85 0,00985 0,02079
38 ОСТ 34-588-68

39 ОСТ 34-588-68

273/259 3032 109 9,9 0,01679 0,03077
40 ОСТ 34-588-68

41 ОСТ 34-588-68

325/309 3232 151 13,7 0,02325 0,04454
42 ОСТ 34-588-68

43 ОСТ 34-588-68

377/359 3430 216 19,6 0,03325 0,05781
44 ОСТ 34-588-68

45 ОСТ 34-588-68

426/408 3624 283 25,5 0,04356 0,071191
46 ОСТ 34-588-68

47 ОСТ 34-588-68

530/512 3552 450 40,6 0,06927 0,11544

Таблица 4.12. Технические характеристики горизонтальных пароводяных

подогревателей, ГОСТ 28679-90, ОСТ 34-351-68, ОСТ 34-352-68,

ОСТ 34-376-68 и ОСТ 34-577-68

Обозначение Наруж-ный и внут-ренний диа­метры корпуса D н /D вн, мм Дли-на тру-бок Чис-ло хо-дов Чис-ло тру­бок Приве-денное число трубок в вертика-льном ряду m Площадь поверхности

нагрева F ,

Площадь живого сечения, м 2
межтруб-ного простран-ства одного хода трубок
01 ОСТ 34-531-68

02 ОСТ 34-531-68

03 ОСТ 34-531-68

04 ОСТ 34-531-68

05 ОСТ 34-531-68

06 ОСТ 34-531-68

07 ОСТ 34-531-68

08 ОСТ 34-531-68

09 ОСТ 34-531-68

325/309 3000 2 68 8,5 9,5 0,061 0,0052
11 ОСТ 34-531-68

12 ОСТ 34-531-68

13 ОСТ 34-531-68

14 ОСТ 34-531-68

15 ОСТ 34-531-68

16 ОСТ 34-531-68

17 ОСТ 34-531-68

325/309 2000 2 68 8,5 6,3 0,061 0,0052
01 ОСТ 34-532-68

02 ОСТ 34-532-68

03 ОСТ 34-532-68

04 ОСТ 34-532-68

05 ОСТ 34-532-68

06 ОСТ 34-532-68

07 ОСТ 34-532-68

08 ОСТ 34-532-68

09 ОСТ 34-532-68

325/309 3000 4 68 8,5 9,5 0,061 0,0026
01 ОСТ 34-576-68

02 ОСТ 34-576-68

03 ОСТ 34-576-68

04 ОСТ 34-576-68

05 ОСТ 34-576-68

06 ОСТ 34-576-68

07 ОСТ 34-576-68

08 ОСТ 34-576-68

09 ОСТ 34-576-68

325/309 3000 2 68 8,5 9,5 0,061 0,0052
11 ОСТ 34-576-68

12 ОСТ 34-576-68

13 ОСТ 34-576-68

14 ОСТ 34-576-68

15 ОСТ 34-576-68

16 ОСТ 34-576-68

17 ОСТ 34-576-68

325/309 2000 2 68 8,5 6,3 0,061 0,0052
01 ОСТ 34-577-68

02 ОСТ 34-577-68

03 ОСТ 34-577-68

04 ОСТ 34-577-68

05 ОСТ 34-577-68

06 ОСТ 34-577-68

07 ОСТ 34-577-68

08 ОСТ 34-577-68

09 ОСТ 34-577-68

325/309 3000 4 68 8,5 9,5 0,061 0,0026

Трубные решетки теплообменников с диаметром кожуха от 600 до 1200 мм, предназначенные для агрессивных сред, изготовляют из двух слоев стали: ВМСтЗсп вместе с Х18Н10Т или из 16ГС вместе с Х18Н10Т.

Теплообменники типа ТН и ТК могут быть собраны в блоки, состоящие из нескольких горизонтальных аппаратов. Количество аппаратов в блоке и габаритные размеры принимают по суммарной площади поверхности теплообмена [ 8 ].

Теплообменники с плавающей головкой (рис. 4.3 и 4.12) применяют для нагрева или охлаждения жидких и газообразных сред в пределах рабочих температур от 30 до +450 °С и условного давления от 1,6 до 6,4 МПа в трубном или межтрубном пространстве. Основные параметры вертикальных и горизонтальных теплообменников приведены в табл. 4.12, 4.13 и 4.15. Кожух, распределительная камера и крышки изготовляются из стали ВМСтЗсп или из стали 16ГС. В зависимости от назначения аппарата применяются трубы из стали 20 или сплава АМг2М. Для конденсаторов применяют трубы из латуни ЛОМш 70-1-0,06 или ЛАМш 77-2-0,06. Для нагрева или охлаждения агрессивных сред применяют трубы из стали Х5М или из коррозионностойкой стали ОХ18Н10Т. В этом случае трубные решетки изготовляют из стали 16ГС или двух слоев сталей 16ГС и Х18Х10Т.

Рис.4.12. Кожухотрубчатый теплообменник с плавающей головкой:

1 – крышка распределительной камеры; 2 – распределительная камера; 3 – кожух; 4 – трубы; 5 – крышка кожуха; 6 – крышка плавающей головки; 7 – опора

Рис.4.13. Кожухотрубчатый теплообменник с U-образными трубами:

1 – крышка распределительной камеры; 2 – кожух; 3 – U-образные трубы; 4 – опора

Теплообменники с U-образными трубами (рис. 4.13) применяют в условиях теплообмена при рабочих тем­пературах среды от –30 до +450 °С. Стандартные теплообменники изготовляют с диаметром кожуха от 325 до 1400 мм и характерными параметрами, указанными в табл. 4.16. Применение теплообменников с U-образными трубами регламентировано условным давлением, которое для нейтральных и невзрывоопасных сред находится в пределах от 1,6 до 6,4 МПа. В теплообменниках с температурой среды от 100 до 450 °С рабочее давление снижается в пределах, указанных в [ 8 ]. Кожух и распределительная камера обычно изготовляются из стали ВМСтЗпс или 16ГС. Теплообменные трубы - из стали 20, а в конденсаторах – из сплава АМг2М.

Расчеты на прочность конструктивных элементов теплообменников из углеродистой или легированной стали выполняют в соответствии с требованиями [ 9 ].

Теплообменные аппараты «труба в трубе» (рис. 4.14) применяют для нагрева и охлаждения жидкостей при давлении до 2,5 МПа и температуре до +450°С. По конструкции различают аппараты жесткой сварной конструкции (тип ТТ), с сальниками на одном или обоих концах труб (тип ТТ-С), с оребренными трубами (тип ТТ-Р). Основные параметры и размеры теплообменников приведены в табл. 4.17. Их изготовляют из цельнокатаных труб. Материал труб – углеродистая или нержавеющая стали.

Рис.4.14. Теплообменник типа «труба в трубе»:

1 – внутренняя труба; 2 – наружная труба; 3 - калач

Последовательное и параллельное соединение отдельных аппаратов «труба в трубе» позволяет создавать теплообменники с площадью поверхности от 1 до 250 м 2 . Простота конструкции аппаратов этого типа позволяет изготавливать их в ремонтных мастерских предприятий.

Таблица 4.13. Теплообменники кожухотрубчатые сварной конструкции с неподвижными трубными решетками и кожухотрубчатые с температурным компенсатором на кожухе [ 8 ]

Диа-метр

ха D в, мм

Дав-ле- Размеры Количество Площадь поверхности теплообмена аппаратов,м 2 , при длине труб, мм Площадь сечения

одного хода по трубам, м 2 ·10 2

Площадь проходного сечения, м 2 .I0 2
2000 3000 4000 6000 9000 В выре- Между

перегород

20х2 1 22 34 45 68 3,6 2,1 2,5
20 х 2 2 21 31 41 62 - 1,7
400 25 х 2 1 17 26 35 52 - 3,8 2,2 2,1
25 х 2 2 15 23 31 47 - 1,7
1 49 73 98 147 7,9 4,7 5,4
1,0 20 х 2 2 46 42 70 93 140 - 3,8
600 1,6 6 43 64 86 129 - 1,0
1 40 61 81 122 9,0 4,9 5,2
2,5 25 х 2 2 38 57 76 114 - 4,2
4,0 4 32 49 65 98 - 1,8
6 34 51 68 102 - 0,9
1 91 138 184 276 416 14,8 7,8 7,7
1,0 1,6 20 х 2 2 88 132 177 266 400 7,1
800 1,6 4 82 124 165 248 373 3,3
2,5 1 74 112 150 226 339 16,7 7,7 7,9
25 х 2 2 70 106 96 142 128 212 193 320 290 7,8 3,1
4,0 6 62 93 125 187 282 2,2
6,0 1 220 295 444 667 23,8 12,5 13,5
1,0 20 х 2 2 4 - 214 202 286 270 430 406 648 610 11,6 5,1
1,6 6 - 203 272 409 614 3,4
1000 2,5 1 - 183 244 366 551 27,0 12,1 11,7
25 х 2 2 - 175 234 353 530 13,2
4,0 4 - 163 218 329 494 6,0
6 160 214 322 486 3,8
1 426 642 964 34,5 17,3 16,5
0,6 20 х 2 2 - 415 626 942 16,9
1,0 4 - - 396 596 897 7,9
1200 6 - - 397 597 900 5,4
1 348 525 790 39,0 16,8 15,2
1,6 2,5 25 х 2 2 - - 338 509 766 18,9
6 - - 316 476 716 5,7

Таблица 4.14. Кожухотрубчатые теплообменные аппараты [ 8 ]

Основные параметры и размеры Нормы по типам
ТН ТК ТП ТУ ТС
1-2000 10-1250 10-1400 10-315
Условное давление в труб ном или межтрубном пространстве р у, МПа 0,6; 1,0; 1,6; 0,6; 1,0; 1,0; 1,6; 2,5; 4,0; 6,4 0,6; 1,0
Диаметр кожуха, мм:

наружный (при изготовлении из труб)

внутренний (при изготовлении из листовой

159; 273; 325; 426

400; (500); 600; 800;

1000; 1200; 1600;

1800; 2000; 2200

325; 426

400; 500; 600; 800;

1000; 1200; 1400

400; 500;
Наружный диаметр и тол

щина стенки теплообмен-

ных труб, мм

(16Х1,6); 20Х2; 25Х2;

25Х2,5; 38Х2; (38Х3);

20Х2; 25Х2; 25Х2,5
Длина теплообменных труб, мм 1000; 1500; 2000; 3000;

4000; 6000; 9000

3000; 6000; 9000
Схема и шаг размещения

теплообменных труб в

трубных решетках, мм

По вершинам равносторонних треугольников:

21 для труб диаметром 16

По вершинам квадратов или равносторонних треугольников:

26 для труб диаметром 20

Таблица 4.15. Кожухотрубчатые теплообменники с плавающей головкой [ 8 ]

Диаметр кожуха, мм Диаметр труб, мм Koличество ходов по трубам Площадь поверхности теплообмена, м 2 , при длине труб, мм, Площадь

проходного

одного хода

по трубам,

м 2 ×10 3 , при их расположении

Площадь проходных

сечений, м 2 -10 3 ,

при расположении труб

по вершинам

квадрата

по вершинам треугольника по вершинам квадрата по вершинам треугольника
3000 6000 9000 6000 9000 по вершинам квадрата по вершам треугольника в вырезе

перегороки

между пере-

городками

В вырезе

перегородки

между перегородками
D н 325 20 2 11,7 23,4 - - - 6,0 - 1,2 2,3 - -
426 20 2 23,4 47,0 - - - 13,0 - 2,1 4,2 -
500 20 2 29,4 79,0 - - - 21,0 - 2,6 6,8 - -
D в 600 20 2 4 - 119,0 111,0 179,0 166,0 135,0 122,0 202,0 183,0 32,0 14,0 36,0 5,3 9,6 4,7 5,8
25 2 - 99,0 90,0 149,0 135,0 109,0 97,0 164,0 146,0 36,0 16,0 40,0 17,0 4,9 9,6 4,6 5,5
800 20 2 - 214,0 200,0 322,0 300,0 249,0 231,0 374,0 346,0 55,0 27,0 64,0 31,0 9,2 15,6 7,7 8,6
25 2 4 - 171,0 160,0 258,0 240,0 196,0 178,0 294,0 267,0 60,0 30,0 69,0 30,0 8,4 15,6 7,5 8,8
1000 20 2 - 352,0 336,0 528,0 504,0 411,0 332,0 610,0 576,0 92,0 45,0 107,0 49,0 14,2 24,0 17,6 14,0
25 2 - 291,0 275,0 436,0 413,0 332,0 308,0 502,0 462,0 104,0 48,0 119,0 56,0 12,3 24,0 11,7 12,5
1200 20 2 - 525,0 505,0 788,0 756,0 611,0 584,0 916,0 875,0 140,0 68,0 162,0 78,0 20,5 36,0 17,0 20,0
25 2 - 425,0 405,0 636,0 607,0 490,0 460,0 735,0 693,0 155,0 74,0 179,0 85,0 19,2 29,0 17,0 18,5
1400 20 2 - 726,0 708,0 1090,0 1060,0 843,0 805,0 1260,0 1210,0 194,0 91,0 222,0 107,0 25,0 41,0 22,0 23,0
25 2 - 590,0 567,0 885,0 852,0 686,0 650,0 1030,0 980,0 215,0 104,0 250,0 116,0 24,0 40,5 22,0 21,0

Таблица 4.16. Кожухотрубчатые теплообменники с U-образными

трубами [ 8]

rowspan="3"| Диаметр Диа- Площадь поверхности теплообмена, м 2 , при длине труб, мм, и

расположении их в решетках

rowspan="3" | Площадь про-ходного сече-ния одного хода по трубам, м 2 ·io 3 , при их расположении Площадь проходных

сечений, м 2 I0 3 , труб

при их расположении

по вершинам квадрата по вершинам треугольника по вершинам квадрата по вершинам треугольника
3000 6000 9000 6000 9000 по

вер- шинам квад- рата

по вершинам

тре- угольника

в вы-

резе перего родки

меж-

ду nepe-город- ками

в вы-

резе пере-город- ки

меж-

ду пере-го- род- ками

D н 325 20 14 28 - - - 7 - 1,0 2,5 - -
426 20 28 55 - - - 14 - 1,8 4,6 - -
D вн 500 20 44 86 - - - 22 - 2,6 6,0 - -
600 20 - 126 188 150 224 33 39 5,1 10,0 4,4 6,0
800 20 - 225 335 263 390 58 68 9,3 17,0 9,0 9,0
1000 20 - 383 567 443 656 98 114 13,0 25,0 12,6 13,0
1200 20 - 575 850 660 973 148 168 19,0 36,0 17,0 21,0
1400 20 - 796 665 1170 964 923 753 1361 1108 202 227 232 262 24,0 47,0 45,0 22,0 28,0 22,0

Таблица 4.17. Теплообменные аппараты типа «труба в трубе» [ 8 ]

Основные параметры (рис. 4.19) Аппараты
разборные одно- и двухпоточ-

ные мало- габаритные

неразборные однопоточ-

ные мало- габаритные

разборные

поточные

неразборные

поточные

разборные много-

поточные

Наружный диаметр тепло-

обменных труб, мм

25, 38, 48, 57 76, 89, 108, 133, 159 38, 48, 57
Наружный диаметр кожуховых труб, мм 57, 76, 89, 108 108, 133, 159, 219 89, 108
Длина кожуховых труб, м 1,5; 3,0; 6,0; 4,5 4,5; 6,0; 6,0; 9,0; 3,0; 6,0;
Площадь поверхности теплообмена, м 2 0,5–5,0 0,1–1,0 5,0–18,0 1,5–6,0 5,0–93,0
Площадь проходных сече-

ний, м 2 .I0 4:

внутри теплообменных

снаружи теплообменных

2,5–35,0 2,5–17,5 50–170 45–170 35–400
Условное давление, МПа:

внутри теплообменных

снаружи теплообменных

6,4; 10,0;
6,4; 10,0; 1,6; 4,0 1,6; 4,0 1,6; 4,0

Кожухотрубные теплообменники появились в начале ХХ века в связи с потребностями тепловых станций в теплообменниках с большой поверхностью, таких, как конденсаторы и подогреватели воды, работающие при относительно высоком давлении. Кожухотрубные теплообменники применяются в качестве конденсаторов, подогревателей и испарителей. В настоящее время их конструкция в результате специальных разработок с учетом опыта эксплуатации стала намного более совершенной. В те же годы началось широкое промышленное применение кожухотрубных теплообменников в нефтяной промышленности. Для эксплуатации в тяжелых условиях потребовались нагреватели и охладители массы, испарители и конденсаторы для различных фракций сырой нефти и сопутствующих органических жидкостей. Теплообменникам часто приходилось работать с загрязненными жидкостями при высоких температурах и давлениях, и поэтому их необходимо было конструировать так, чтобы обеспечить легкость ремонта и очистки.

С годами кожухотрубные теплообменники стали наиболее широко применяемым типом аппаратов. Это обусловлено прежде всего надежностью конструкции, большим набором вариантов исполнения для различных условий эксплуатации, в частности:

    однофазные потоки, кипение и конденсация по горячей и холодной сторонамтеплообменника с вертикальным или горизонтальным исполнением;

    диапазон давления от вакуума до высоких значений;

    в широких пределах изменяющиеся перепады давления по обеим сторонам вследствие большого разнообразия вариантов;

    удовлетворение требований по термическим напряжениям без существенного повышения стоимости аппарата;

    размеры от малых до предельно больших (5000 м 2);

    возможность применения различных материалов в соответствии с требованиями к стоимости, коррозии, температурному режиму и давлению;

    использование развитых поверхностей теплообмена как внутри труб, так и снаружи, различных интенсификаторов и т.д;

    возможность извлечения пучка труб для очистки и ремонта.

В кожухотрубчатом теплообменнике один из теплоносителей протекает по трубам, другой – по межтрубному пространству. Теплота от одного теплоносителя другому передается через поверхность стеной труб.

Кожухотрубчатые теплообменники бывают одноходовыми, здесь оба теплоносителя не меняя направления движутся по всему сечению (один по трубному, другой по межтрубному), и многоходовыми, в которых потоки с помощью дополнительных перегородок последовательно меняют направление, тем самым, увеличивая коэффициент теплоотдачи и скорость потока.

Основными элементами кожухотрубчатых теплообменников являются пучки труб, трубные решетки, корпус, крышки, патрубки. Концы труб крепятся в трубных решетках развальцовкой, сваркой и пайкой.

Для увеличения скорости движения теплоносителей с целью интенсификации теплообмена нередко устанавливают перегородки, как в трубном, так и в межтрубном пространствах.

Кожухотрубчатые теплообменники могут быть вертикальными, горизонтальными и наклонными в соответствии с требованиями технологического процесса или удобства монтажа. В зависимости от величины температурных удлинений трубок и корпуса применяют кожухотрубчатые теплообменники жесткой, полужесткой и нежесткой конструкции. Один из вариантов такого теплообменника представлен на рисунке 1.2.1.

Рис. 1.2 - Кожухотрубчатый теплообменник

Теплопередающая поверхность аппаратов может составлять от нескольких сотен квадратных сантиметров до нескольких тысяч квадратных метров.

Кожух (корпус) кожухотрубчатого теплообменника представляет собой трубу, сваренную из одного или нескольких стальных листов. Кожухи различаются главным образом способом соединения с трубной доской и крышками. Толщина стенки кожуха определяется давлением рабочей среды и диаметром кожуха, но принимается не менее 4 мм. К цилиндрическим кромкам кожуха приваривают фланцы для соединения с крышками или днищами. На наружной поверхности кожуха прикрепляют опоры аппарата.

В кожухотрубчатых теплообменниках проходное сечение межтрубного пространства в 2-3 раза больше проходного сечения трубок. Поэтому при одинаковых расходах теплоносителей, имеющих одинаковое агрегатное состояние, коэффициенты теплоотдачи на поверхности межтрубного пространства невысокие, что снижает коэффициент теплопередачи в аппарате. Устройство перегородок в межтрубном пространстве способствует увеличению скорости теплоносителя и повышению коэффициента теплопередачи.

Кожухотрубчатые теплообменные аппараты, их типы и конструктивное исполнение

Кожухотрубчатые теплообменники – наиболее распространенная конструкция теплообменной аппаратуры. По ГОСТ 9929 стальные кожухотрубчатые теплообменные аппараты изготовляют следующих типов : ТН – с неподвижными трубными решетками; ТК – с температурным компенсатором на кожухе; ТП – с плавающей головкой; ТУ – с U-образными трубами; ТПК – с плавающей головкой и компенсатором на ней (рисунок 2.49).

Рисунок 2.49 – Типы кожухотрубчатых ТОА

В зависимости от назначения кожухотрубчатые аппараты могут быть теплообменниками, холодильниками, конденсаторами и испарителями; их изготовляют одно- и многоходовыми.

Рисунок 2.50 – Двухходовой горизонтальный теплообменник типа ТН

Двухходовой горизонтальный теплообменник с неподвижными трубными решетками (типа ТН – рисунок 2.50) состоит из цилиндрического сварного кожуха 5, распределительной камеры 11 и двух крышек 4. Трубный пучок (рисунок 2.51) образован трубами 7, закрепленными в двух трубных решетках 3. Трубные решетки приварены к кожуху. Крышки, распределительная камера и кожух соединены фланцами. В кожухе и распределительной камере выполнены штуцера для ввода и вывода теплоносителей из трубного (штуцера 1, 12) и межтрубного (штуцера 2, 10) пространств. Перегородка 13 в распределительной камере образует ходы теплоносителя по трубам (рисунок 2.52). Для герметизации узла соединения продольной перегородки с трубной решеткой использована прокладка 14, уложенная в паз решетки 3.

Рисунок 2.51 – Трубный пучок

Рисунок 2.52 – Сдвоенный ТОА Рисунок 2.53 – Трубная решетка

Теплообменники этой группы изготовляют на условное давление 0,6–4,0 МПа, диаметром 159–1200 мм, с поверхностью теплообмена до 960 м 2 ; длина их до 10 м, масса до 20 т. Теплообменники этого типа применяют до температуры 350 °С.

Особенностью аппаратов типа ТН является то, что трубы жестко соединены с трубными решетками (рисунок 2.53), а решетки – с корпусом. В связи с этим исключена возможность взаимных перемещений труб и кожуха; поэтому аппараты этого типа называют еще теплообменниками жесткой конструкции.

Поскольку интенсивность теплоотдачи при поперечном обтекании труб теплоносителем выше, чем при продольном, в межтрубном пространстве теплообменника установлены зафиксированные стяжками 5 поперечные перегородки 6, обеспечивающие зигзагообразное по длине аппарата движение теплоносителя в межтрубном пространстве.

На входе теплообменной среды в межтрубное пространство предусмотрен отбойник 9 – круглая или прямоугольная пластина, предохраняющая трубы от местного эрозионного изнашивания.

Достоинством аппаратов этого типа является простота конструкции и, следовательно, меньшая стоимость.

Однако им присущи два крупных недостатка. Во-первых, очистка межтрубного пространства подобных аппаратов сложна, поэтому теплообменники такого типа применяются в тех случаях, когда среда, проходящая через межтрубное пространство, является чистой, не агрессивной, т. е. когда нет необходимости в чистке.

Во-вторых, существенное различие между температурами трубок и кожуха в этих аппаратах приводит к большему удлинению трубок по сравнению с кожухом, что обусловливает возникновение температурных напряжений в трубной решетке 5, нарушает плотность вальцовки труб в решетке и ведет к попаданию одной теплообменивающейся среды в другую. Поэтому теплообменники этого типа применяют при разнице температур теплообменивающихся сред, проходящих через трубки и межтрубное пространство не более 50 °C и при сравнительно небольшой длине аппарата.

Кожухотрубчатый аппарат с линзовым компенсатором на корпусе (типа ТК) представлен на рисунке 2.54а. Такие аппараты имеют цилиндрический кожух 1, в котором расположен трубный пучок 2; трубные решетки 3 с развальцованными трубками крепятся к корпусу аппарата. С обоих концов теплообменный аппарат закрыт крышками 4. Аппарат оборудован штуцерами 5 для теплообменивающихся сред; одна среда идет по трубкам, другая проходит через межтрубное пространство. Теплообменные аппараты с температурным компенсатором типа ТК имеют неподвижные трубные решетки и снабжены специальными гибкими элементами 6 (линзами) для компенсации различия в удлинении кожуха и труб, возникающего вследствие различия их температур. Наиболее часто в аппаратах типа ТК используют одно- и многоэлементные линзовые компенсаторы (рисунок 2.55), изготовляемые обкаткой из коротких цилиндрических обечаек. Линзовый элемент, показанный на рисунке 2.55б, сварен из двух полу линз, полученных из листа штамповкой.

Компенсирующая способность линзового компенсатора примерно пропорциональна числу линзовых элементов в нем, однако применять компенсаторы с числом линз более четырех не рекомендуется, так как резко снижается сопротивление кожуха изгибу. Для увеличения компенсирующей способности линзового компенсатора он может быть при сборке кожуха предварительно сжат (если предназначен для работы на растяжение) или растянут (при работе на сжатие).

При установке линзового компенсатора на горизонтальных аппаратах в нижней части каждой линзы сверлят дренажные отверстия с заглушками для слива воды после гидравлических испытаний аппарата.

Теплообменники с U-образными трубками типа ТУ (рисунок 2.56) имеют одну трубную решетку, в которую завальцованы оба конца U-образных трубок 7, что обеспечивает свободное удлинение трубок при изменении их температуры. Недостатком таких аппаратов является трудность чистки внутренней поверхности труб, вследствие которой они используются преимущественно для чистых продуктов.



Рисунок 2.56 – Теплообменный аппарат типа ТУ

Теплообменники этого типа могут быть в горизонтальном и вертикальном исполнении. Их изготовляют диаметром 325–1400 мм с трубами длиной 6–9 м, на условное давление до 6,4 МПа и для рабочих температур до 450 °С. Масса теплообменников до 30 т.

Для обеспечения раздельного ввода и вывода теплоносителя в распределительной камере предусмотрена перегородка (рисунок 2.57).

Теплообменники типа ТУ являются двухходовыми по трубному пространству и одно- или двухходовыми по межтрубному пространству.

Рисунок 2.57 – Трубный пучок с U-образными трубами

В аппаратах типа ТУ обеспечивается свободное температурное удлинение труб: каждая труба может расширяться независимо от кожуха и соседних труб. Разность температур стенок труб по ходам в этих аппаратах не должна превышать 100 °С. В противном случае могут возникнуть опасные температурные напряжения в трубной решетке вследствие температурного скачка на линии стыка двух ее частей.

Преимуществом конструкции аппарата типа ТУ является возможность периодического извлечения трубного пучка (см. рисунок 2.57) для очистки наружной поверхности труб или полной замены пучка. Однако следует отметить, что наружная поверхность труб в этих аппаратах неудобна для механической очистки.

Поскольку механическая очистка внутренней поверхности труб в аппаратах типа ТУ практически невозможна, в трубное пространство таких аппаратов следует направлять среду, не образующую отложений, которые требуют механической очистки.

Внутреннюю поверхность труб в этих аппаратах очищают водой, водяным паром, горячими нефтепродуктами или химическими реагентами. Иногда используют гидромеханический способ (подача в трубное пространство потока жидкости содержащей абразивный материал, твердые шары и др.).

Один из наиболее распространенных дефектов кожухотрубчатого теплообменника типа ТУ – нарушение герметичности узла соединения труб с трубной решеткой из-за весьма значительных изгибающих напряжений, возникающих от массы труб и протекающей в них среды. В связи с этим теплообменные аппараты типа ТУ диаметром от 800 мм и более для удобства монтажа и уменьшения изгибающих напряжений в трубном пучке снабжают роликовыми опорами.

К недостаткам теплообменных аппаратов типа ТУ следует отнести относительно плохое заполнение кожуха трубами из-за ограничений, обусловленных изгибом труб. Обычно U-образные трубы изготовляют гибкой труб в холодном или нагретом состоянии.

К существенным недостаткам аппаратов типа ТУ также следует отнести невозможность замены труб (за исключением наружных труб) при выходе их из строя, а также сложность размещения труб, особенно при большом их числе.

Из-за указанных недостатков теплообменные аппараты этого типа не нашли широкого применения.

Теплообменные аппараты с плавающей головкой типа ТП (с подвижной трубной решеткой) являются наиболее распространенным типом поверхностных аппаратов (рисунок 2.58). Подвижная трубная решетка позволяет трубному пучку свободно перемещаться независимо от корпуса. В аппаратах этой конструкции температурные напряжения могут возникать лишь при существенном различии температур трубок.

Теплообменники этой группы стандартизованы по условным давлениям Р у =1,6 – 6,4 МПа, по диаметрам корпуса 325–1400 мм и поверхностям нагрева 10–1200 м 2 с длиной труб 3–9 м. Масса их достигает 35 т. Теплообменники применяют при температурах до 450 °С.

В теплообменных аппаратах подобного типа трубные пучки сравнительно легко могут быть удалены из корпуса, что облегчает их ремонт, чистку или замену.

Горизонтальный двухходовой конденсатор типа ТП состоит из кожуха 10 и трубного пучка. Левая трубная решетка 1 соединена фланцевым соединением с кожухом и распределительной камерой 2, снабженной перегородкой 4. Камера закрыта плоской крышкой 3. Правая, подвижная, трубная решетка установлена внутри кожуха свободно и образует вместе с присоединенной к ней крышкой 8 «плавающую головку». Со стороны плавающей головки аппарат закрыт крышкой 7. При нагревании и удлинении трубок плавающая головка перемещается внутри кожуха.

Для обеспечения свободного перемещения трубного пучка внутри кожуха в аппаратах диаметром 800 мм и более трубный пучок снабжают опорной платформой 6. Верхний штуцер 9 предназначен для ввода пара и поэтому имеет большое проходное сечение; нижний штуцер 5 предназначен для вывода конденсата и имеет меньшие размеры.

Значительные коэффициенты теплоотдачи при конденсации практически не зависят от режима движения среды. Поперечные перегородки в межтрубном пространстве этого аппарата служат лишь для поддержания труб и придания трубному пучку жесткости.

Хотя в аппаратах типа ТП обеспечивается хорошая компенсация температурных деформаций, эта компенсация не является полной, поскольку различие температурных расширений самих трубок приводит к короблению трубной решетки. В связи с этим в многоходовых теплообменниках типа ТП диаметром более 1000 мм при значительной (выше 100 °С) разности температур входа и выхода среды в трубном пучке, как правило, устанавливают разрезную по диаметру плавающую головку.

Наиболее важный узел теплообменников с плавающей головкой – соединение плавающей трубной решетки с крышкой. Это соединение должно обеспечивать возможность легкого извлечения пучка из кожуха, аппарата, а также минимальный зазор Δ между кожухом и пучком труб. Вариант, показанный на рисунке 2.59а, позволяет извлекать трубный пучок, но зазор Δ получается больше (по крайне мере, чем в теплообменниках типа ТН) на ширину фланца плавающей головки. Крепление по этой схеме наиболее простое; его часто применяют в испарителях с паровым пространством.

Размещение плавающей головки внутри крышки, диаметр которой больше диаметра кожуха, позволяет уменьшить зазор; но при этом усложняется демонтаж аппарата, так как плавающую головку нельзя извлечь из кожуха теплообменника (рисунок 2.59б).

Особенно часто трубные пучки с плавающей головкой используют в испарителях с паровым пространством.

В этих аппаратах должна быть создана большая поверхность зеркала испарения, поэтому диаметр кожуха испарителя значительно превышает диаметр трубного пучка, а перегородки в пучке служат лишь для увеличения его жесткости. В испарителе (рисунок 2.60) уровень жидкости в кожухе 11 поддерживается перегородкой 2. Для обеспечения достаточного объема парового пространства и увеличения поверхности испарения расстояние от уровня жидкости до верха корпуса составляет примерно 30% его диаметра. Трубный пучок 3 расположен в корпусе испарителя на поперечных балках 4.

.

Рисунок 2.60 – Испаритель

Для удобства монтажа трубного пучка в перегородке 2 и левом днище предусмотрен люк 10, через который в аппарат можно завести трос от лебедки. Продукт вводится в испаритель через штуцер 5; для защиты трубного пучка от эрозии над этим штуцером установлен отбойник 6. Пары отводятся через штуцер 9, продукт – через штуцер 1. Теплоноситель подводится в трубный пучок и отводится через штуцеры 7, 8. В таких аппаратах можно устанавливать несколько трубных пучков.

Теплообменные трубы кожухотрубчатых стальных аппаратов – это серийно выпускаемые, промышленностью трубы из углеродистых, коррозионно-стойких сталей и латуни. Диаметр теплообменных труб значительно влияет на скорость теплоносителя, коэффициент теплоотдачи в трубном пространстве и габариты аппарата; чем меньше диаметр труб, тем большее их число можно разместить по окружностям в кожухе данного диаметра. Однако трубы малого диаметра быстрее засоряются при работе с загрязненными теплоносителями, определенные сложности возникают при механической очистке и закреплении таких труб развальцовкой. В связи с этим наиболее употребительны стальные трубы с наружным диаметром 20 и 25 мм. Трубы диаметром 38 и 57 мм применяют при работе с загрязненными или вязкими жидкостями.

С увеличением длины труб и уменьшением диаметра аппарата его стоимость снижается. Наиболее дешевый теплообменный аппарат при длине труб 5–7 м.

Трубы закрепляют в решетках чаще всего развальцовкой (рисунок 2.61а, б), причем особенно прочное соединение (необходимое в случае работы аппарата при повышенных давлениях) достигается при устройстве в трубных решетках отверстий с кольцевыми канавками, которые заполняются металлом трубы в процессе ее развальцовки (рисунок 2.61б). Кроме того, используют закрепление труб сваркой (рисунок 2.61в), если материал трубы не поддается вытяжке и допустимо жесткое соединение труб с трубной решеткой, а также пайкой (рису нок 2.61г), применяемой для соединения главным образом медных и латунных труб. Изредка используют соединение труб с решеткой посредством сальников (рисунок 2.61д), допускающих свободное продольное перемещение труб и возможность их быстрой замены. Такое соединение позволяет значительно уменьшить температурную деформацию труб, но является сложным, дорогим и недостаточно надежным.

Наиболее распространенный способ крепления труб в решетке – развальцовка. Трубы вставляют в отверстия решетки с некоторым зазором, а затем обкатывают изнутри специальным инструментом, снабженным роликами (вальцовкой). Для интенсификации теплообмена иногда используют турбулизаторы– элементы, турбулизирующие или разрушающие пограничный слой теплоносителя на наружной поверхности труб. Стремление интенсифицировать теплоотдачу со стороны малоэффективного теплоносителя (газы, вязкие жидкости) привело к разработке различных конструкций оребренных труб. Установлено, что оребрение увеличивает не только теплообменную поверхность, но и коэффициент теплоотдачи от оребренной поверхности к теплоносителю вследствие турбулизации потока ребрами. При этом, однако, надо учитывать возрастание затрат на прокачивание теплоносителя.

Применяют трубы с продольными (рисунок 2.62а) и разрезными (рисунок 2.62б) ребрами, с поперечными ребрами различного профиля (рисунок 2.62в). Оребрение на трубах можно выполнить в виде спиральных ребер (рисунок 2.62г), иголок различной толщины и др.

Рисунок 2.62 – Трубы с оребрением

В кожухотрубчатых теплообменниках устанавливают поперечные и продольные перегородки.

Поперечные перегородки (рисунок 2.63), размещаемые в межтрубном пространстве теплообменников, предназначены для организации движения теплоносителя в направлении, перпендикулярном оси труб, и увеличения скорости теплоносителя в межтрубном пространстве. В обоих случаях возрастает коэффициент теплоотдачи на наружной поверхности труб.

Поперечные перегородки устанавливают и в межтрубном пространстве конденсаторов и испарителей, в которых коэффициент теплоотдачи на наружной поверхности труб на порядок выше коэффициента на их внутренней поверхности. В этом случае перегородки исполняют роль опор трубного пучка, фиксируя трубы на заданном расстоянии одна от другой, а также уменьшают вибрацию труб.



просмотров