Определение угла естественного откоса песчаного грунта в сухом и влажном состоянии. Определение угла естественного откоса песчаного грунта 6 определение угла естественного откоса песчаных грунтов

Определение угла естественного откоса песчаного грунта в сухом и влажном состоянии. Определение угла естественного откоса песчаного грунта 6 определение угла естественного откоса песчаных грунтов

Лабораторная работа №1

Определение гранулометрического состава песка и степени его однородности

Цель работы: определение свойств грунта (песка) по его гранулометрическому составу. Зная его состав и содержание в нем определения фракций, можно судить о его свойствах и применении в практике строительства (растворы, песчаные подушки, фундаменты и т.п.).

Задачи работы : получить навыки определения процентного содержания каждой фракции, квартования, определения однородности и неоднородности грунтов по графику.

Обеспечивающие средства: сита, электронные весы, навеска воздушно-сухого песка.

Наименование определений Размер фракции Сумма весов фракций Потеря
> 2,0 1,0 0,5 0,25 0,1 < 0,1
Вес фракции, г (1 отвес)
Вес фракции, г (2 отвес)
Вес фракции, г (3 отвес)
Вес фракции, г (среднее значение)
% от общего количества
Сумма % менее данного диаметра

U = d60/d10 = 0,35/0,14 = 2,5 ≤ 3

Заключение (вывод): Так как U< 3 – песок по составу однородный. Согласно ГОСТ песок средней крупности, так как содержание фракций крупнее d 0,25 больше 50 %.

Исполнители:Сельков Д.М., Старченко В.П., Яковлева Н.В.


Лабораторная работа №2

Определение угла естественного откоса песчаного грунта в сухом и влажном состоянии

Цель работы: исследовать зависимость изменения величины угла естественного откоса песка от его влажности.

Задачи работы : получить навыки работы с прибором Литвинова, научиться правильному взятию отсчетов и определению угла естественного откоса в градусах.

Обеспечивающие средства: прибор системы Литвинова, совок, сосуд с водой, песчаный грунт.

Таблица определения угла естественного откоса

Заключение (вывод):

Угол естественного откоса, угол внутреннего трения (в механике грунтов)- угол, образованный свободной поверхностью рыхлой горной массы или иного сыпучего вещества с горизонтальной плоскостью. Иногда может быть использован термин «угол внешнего трения».


Частицы вещества, находящиеся на свободной поверхности насыпи, испытывают состояние предельного (критического) равновесия. Угол естественного откоса связан с коэффициентом трения и зависит от шероховатости зёрен, степени их увлажнения, гранулометрического состава и формы, а также от удельного веса материала.

Угол естественного откоса грунта является параметром прочности почв, и он используется для описания сопротивления трения при сдвиге почвы вместе с нормальным эффективным напряжением.

По углам естественного откоса определяются максимально допустимые углы откосов уступов и бортов карьеров, насыпей, отвалов и штабелей.

При разработке (резании) грунты разрыхляются, структура их нарушается, и они теряют связность. Также изменяются силы трения и сцепления, уменьшаясь с увеличением влажности. Поэтому устойчивость незакрепленных откосов также непостоянна и сохраняется временно до изменения физико-химических свойств грунта, связанного в основном с атмосферными осадками в летнее время и последующим увеличением влажности грунта. Так, угол естественного откоса φ для песка сухого 25...30°, песка влажного 20°, глины сухой 45° и глины влажной 15°. Установление безопасной высоты уступа и угла откоса является важной задачей. От правильного выбора угла откоса зависит безопасность разработки котлована, карьера.

Исполнители:Мелехин С.А., Морохин А.В.

Угол естественного откоса или угол покоя – это угол между плоскостью основания штабеля и образующей, который зависит от рода и кондиционного состояния груза.Угол естественного откоса – максимальный угол наклона откоса гранулированного материала, не обладающего сцеплением, т. е. свободно текучего материала. Рыхлые и пористые навалочные грузы имеют больший угол покоя, чем твердые кусковые грузы. С увеличением влажности угол покоя растет.При длительном хранении многих навалочных грузов угол покоя за счет уплотнения и слеживаемости возрастает. Различают угол естественного откоса в покое и в движении. В покое угол естественного откоса на 10 – 18° больше, чем в движении (например, на ленте транспортера).

Величина угла естественного откоса груза зависит от формы, размера, шероховатости и однородности грузовых

частиц, влажности массы груза, способа его отсыпки, исходного состояния и материала опорной поверхности.

Применяются различные методы определения величины угла естественного откоса; к числу наиболее распространенных относятся способы насыпки и обрушения.

Экспериментальное определение сопротивления сдвигу и основных параметров груза производится обычно методами прямого среза, одноосного и трехосного сжатия. Испытания свойств груза методами прямого среза применимы как к идеальным, так и к связным сыпучим телам. Метод испытания на одноосное (простое) сжатие – раздавливание применим только для оценки общего сопротивления сдвигу связных сыпучих тел при условном допущении, что во всех точках испытываемого образца сохраняется однородное напряженное состояние. Наиболее надежные результаты испытаний характеристик связного сыпучего тела дает метод трехосного сжатия, позволяющий исследовать прочность образца груза при всестороннем сжатии.

Определение угла естественного откоса мелкозернистых веществ (размеры частиц менее 10 мм) производится с помощью «наклонного ящика». Угол естественного откоса в этом случае – угол, образованный горизонтальной плоскостью и верхней кромкой испытательного ящика в тот момент, когда только начнется массовое осыпание вещества в ящике

Судовой метод определения угла естественного откоса вещества используют при отсутствии «наклоняемого ящи-

ка». В этом случае угол естественного откоса – это угол между образующей конуса груза и горизонтальной

плоскостью.

    Угол естественного откоса. Способы определения в натурных условиях

Угол естественного откоса или угол покоя – э то угол между плоскостью основания штабеля и образующей, который зависит от рода и кондиционного состояния груза. Угол естественного откоса – максимальный угол наклона откоса гранулированного материала, не обладающего сцеплением, т. е. свободно текучего материала.

На практике данными о величине угла естественного откоса пользуются при определении площади штабелирования груза, количества груза в штабеле, объема внутритрюмных штивочных работ, при подсчете величин давления груза на ограждающие его стенки

Применяются различные методы определения величины угла естественного откоса; к числу наиболее распространенных относятся способы насыпки и обрушения .

Экспериментальное определение сопротивления сдвигу и основных параметров груза производится обычно методами прямого среза , одноосного и трехосного сжатия .

Определение угла естественного откоса мелкозернистых веществ (размеры частиц менее 10 мм) производится с помощью «наклонного ящика ». Угол естественного откоса в этом случае – угол, образованный горизонтальной плоскостью и верхней кромкой испытательного ящика в тот момент, когда только начнется массовое осыпание вещества в ящике.

Судовой метод определения угла естественного откоса вещества используют при отсутствии «наклоняемого ящика». В этом случае угол естественного откоса – это угол между образующей конуса груза и горизонтальной плоскостью.

Практика производства замеров углов естественного откоса в натурных условиях показывает, что их величина несколько изменяется в зависимости от метода отсыпки груза (струей или дождем), массы исследуемого груза, высоты , с которой производится экспериментальная отсыпка.

Для быстрых измерений удобен способ Мооса , при котором зерно насыпают в прямоугольный ящик со стеклянными стенками размерами 100х200х300 мм на 1/3 его высоты. Ящик осторожно поворачивают на 90° и измеряют, угол между поверхностью зерна и горизонтальной (после поворота) стенкой.

Общие положения

Углом естественного откос а называют угол, при котором неукрепленныйтоткос песчаного грунта сохраняет равновесие, или угол, под которым располагаются свободно насыпаемый песок и другие сыпучие материалы.

Угол естественного откос а определяют в воздушно-сухом состоянии и под водой с помощью диска, имеющего вертикальный тарировочный стержень

1. Для определения угла естественного откоса в воздушно-сухом состоянии диск устанавливают в стеклянную банку, на диск ставится кожух.

2. В кожух засыпается песок в естественно-сухом состоянии.

3. Кожух плавно снимается с диска, и излишек песка осыпается, а на диске остается конус из песка, вершина которого в месте соприкосновения со стержнем показывает значение угла откоса.

4. Для определения угла естественного откоса под водой диск устанавливают в стеклянную банку, а на диск ставится кожух.

5. В кожух засыпается песок в естественно-сухом состоянии.

6. Банка заполняется водой до верха кожуха.

7. Песок, осевший в кожухе, засыпается доверху.

Гранулометрический состав. Практически характер и качество разрушения породы четко определяется ее гранулометрическим составом. Он характеризует разрыхленную горную породу по процентному содержанию в ней частиц различной крупности и может быть изображен кривой (рис. 2.1), если по оси абсцисс отложить диаметр частиц, мм, а по оси ординат - суммарное содержание частиц диаметром, меньшим данного, в процентах.
Для характеристики неоднородности рыхлых пород используется отношение d60/d10=Kн называемое коэффициентом неоднородности (d60, d10 - максимальные диаметры кусков, составляющих 60 и 10% общего объема рыхлой породы соответственно).
Особенно важное значение гранулометрический состав породы имеет при процессах гидромеханизации. От него зависят удельный расход воды на разработку и транспортирование, наименьший допустимый уклон подошвы забоя и лотков, критическая скорость воды.
Угол естественного откоса φ - максимальный угол, образуемый свободной поверхностью рыхлой раздробленной породы с горизонтальной плоскостью. Частицы породы, находящиеся на этой поверхности, испытывают состояние предельного равновесия. Если вес частицы Р (рис. 2.2), то в состоянии предельного равновесия на свободной поверхности на частицу действуют силы: Рп - сила нормального давления, прижимающая частицу к свободной поверхности; Рτ - сила, стремящаяся сдвинуть частицу вниз; Fт - сила трения, зависящая от Рn и коэффициента трения fтр, R - реакция опоры. Поскольку частица находится в равновесии, имеем

т. е.


Таким образом, угол естественного откоса зависит от коэффициента трения между кусками породы и поверхностью, по которой возможно ее скольжение. Для рыхлой (сыпучей) среды, например песка, он может быть определен с помощью цилиндрической емкости без дна. Емкость устанавливают на горизонтальной площадке и заполняют породой. Затем емкость поднимают и порода формирует свободную поверхность, соответствующую углу естественного откоса.
В общем случае угол естественного откоса зависит от шероховатости зерен, степени их увлажнения, гранулометрического состава и формы, а также от плотности материала. С увеличением влажности до некоторого предела у таких горных пород, как уголь или песок, угол естественного откоса возрастает. С увеличением крупности и угловатости частиц он также увеличивается. В целом у рыхлых пород он находится в пределах 0-40°.
По углам естественного откоса определяют максимальные допустимые углы откосов уступов и бортов карьеров, насыпей, отвалов и штабелей.

Лабораторная работа 1. Определение величины угла ссыпания и угла естественного откоса зернисто-кускового материала

Цель работы. Определить величины угла естественного откоса и угла ссыпания зернисто-кускового материала.

Теоретические положения . Зернисто-кусковой материал, лежащий на наклонной плос­кости (например, на наклонной плоскости бункера , на наклон­ном ленточном транспортере и т. д.), при определенном угле наклона этой плоскости к горизонту начинает ссыпаться по ней. Такой предельный угол наклона называется углом ссыпания.

В зависимости от формы кусочков можно наблюдать два ви­да движения кускового материала по плоскости ссыпания: сколь­жение и перекатывание. Скольжение наблюдается при кусках с развитыми плоскими гранями; передвижению кусков здесь препятствует трение скольжения между гранями кусков и плос­костью ссыпания. Качение наблюдается при форме кусков, близкой к шару. В этом случае передвижение куска происходит как скатывание его, с сопротивлением трения качения.

Предельное состояние покоя слоя кускового материала на наклонной плоскости имеет место тогда, когда сила трения F равна проекции М силы тяжести G на эту плоскость (рисунок 1). С другой стороны, эта же сила трения пропорциональна нор­мальному давлению кускового материала на наклонную плос­кость

F = M = fN ,

откуда f = М / N = tgα

где f – коэффициент трения, определяемый свойствами самого материала, равный tga ;

α – угол ссыпания зернисто-кускового материала.

Рисунок 1

Если рассматривать весь слой сыпучего материала , который перемещается по гладкой наклонной плоскости, то здесь, даже в случае кусков шарообразной формы, происходит скорее сколь­жение материала по плоскости, чем перекатывание, так как весь материал «течет» сплошной массой.


Угол ссыпания зависит от коэффициента трения материала о плоскость ссыпания, от формы и крупности кусков, от структу­ры поверхности, по которой происходит ссыпание (поверхность может быть гладкой, шероховатой, ребристой и т. д.), а также он влажности самого кускового материала.

Если насыпать зернисто-кусковой материал на горизонталь­ную плоскость, то он располагается на ней в виде конуса. Угол между образующей этого конуса и горизонтальной плоско­стью называется углом естественного откоса зернисто-кускового материала.

Угол естественного откоса всегда больше угла ссыпания (для одного и того же материала), так как наличие неровностей на поверхности материала препятствует скатыванию, а тем более скольжению кусков. Угол естественного откоса в большой степе­ни зависит от фракционного состава кускового материала, ибо последний определяет собой общую структуру поверхности ко­нуса. Эта разнородность размера кусков вызывает в то же вре­мя преимущественное скатывание крупных кусков материала на край насыпаемой кучи, вследствие того, что неровности поверх­ности оказывают меньшее сопротивление перекатыванию крупн ых кусков, чем мелких (рисунок 2). Неравномерное распределение кусков по крупности необходимо учитывать при загрузке насадочных абсорберов, шахтных печей и т. д., так как в местах рас­положения крупных кусков, т. е. на-периферии, получается боль­шее сечение каналов и газ пойдет преимущественно по этим ка­налам, имеющим меньшее гидравлическое сопротивление.

Тонко измельченные материалы имеют больший угол естест­венного откоса, т. е. меньшую сыпучесть, в связи с более разви­той поверхностью трения.

Рисунок 2

Угол естественного откоса значительно зависит от влажности материала, потому что вода, располагаясь на поверхности кус­ков, вызывает слипание их и тем самым затрудняет движение отдельных кусков. Чем меньше куски материала, тем больше проявляется влияние влажности; но чрезмерное увлажнение приводит к увеличению послойной текучести жидкости между кусочками материала, и угол естественного откоса вновь умень­шается (таблица 1).

Таблица 1

Порода

Угол естественного откоса, град, для породы

сухой

влажной

мокрой

Песок крупный

30 – 35

32 – 40

25 – 27

Песок средний

28 – 30

Песок мелкий

30 – 35

15 – 20

Гравий

35 – 40

Угол естественного откоса и угол ссыпания резко уменьшают­ся при движении материала и плоскости, на которой он лежит. При сотрясениях или вибрациях материал интенсивно рассыпа­ется, растекается, стремясь принять горизонтальное положение, так как при вибрациях в отдельные моменты уменьшается вза­имное трение по поверхности соприкосновения кусочков друг с другом и кусочков с плоскостью. На этом основано применение вибротранспортирующих устройств, вибраторов для облегчения разгрузки бункеров, самосвалов и дозирующих устройств.

Знание углов естественного откоса и ссыпания необходимо при проектировании складских помещений, транспортеров, шахт­ных печей, где имеют дело с сыпучими материалами. Невозмож­ность учета теоретически всех факторов, определяющих величи­ну этих углов, приводит к необходимости экспериментального их определения.


Описание установки. Для определения угла естественного откоса используется гладкая горизонтальная плоскость с нанесенными на ней делениями в сантиметрах и короткий металлический цилиндр; для определения угла ссыпания - прибор, состоящий из вала 1, на который навертывается шнур, кронштейна 2, через который шнур соединяется с подъемной доской 3, и угломера 4, установленного у оси вращения подъемной доски. Подъемная доска снабжена указателем, показывающим на угломере угол ее подъема (рисунок 3). Для сбора ссыпавшейся массы поставлен ящик. В рабо­те используется также линейка, весы и прямоугольная металли­ческая рамка.


Рисунок 3

Проведение опыта и запись наблюдений. При определении углов естественного откоса и ссыпания ис­пользуется сыпучий материал двух или трех сортов крупности.

А. Определение угла естественного откоса

1. Установить металлический цилиндр в центре горизонталь­ной плоскости,

2. Набрать совком сыпучий материал и высыпать его в цилиндр.

3. Медленно поднять цилиндр, предоставив материалу сво­бодно рассыпаться по плоскости.

Б. Определение угла ссыпания

1. Уложить на подъемной доске прямоугольную металличес­кую рамку и полностью засыпать ее сыпучим материалом.

2. Снять прямоугольную рамку и, медленно вращая вал, при­вести подъемную доску в наклонное положение.

3. Когда материал начнет ссыпаться, прекратить подъем до­ски и записать угол ее наклона. Перенести весь материал с подъемной доски и ее подставки на лист бумаги, взвесить мате­риал, добавить определенное количество воды (заданное препо­давателем), тщательно перемешать и произвести с влажным ма­териалом те же определения (этапы А, 1 - 4 и Б,

Результаты опытов внести в таблицу 2.

Таблица 2

Наименование исследуемого материала

Угол естественного откоса

Угол ссыпания

сухой материал

влажный материал

Сухой материал

Влажный материал

tg α

tg α

Обработка результатов опыта. Пользуясь соотношением определить величину tg α и по таблицам найти соответству­ющее значение α.

font-size:14.0pt; font-family:" times new roman>где α – угол естественного откоса, град.;

Н – высота насыпанной кучи материала, см;

D – диаметр насыпанной кучи материала, см;

font-size:14.0pt; font-family:" times new roman>– радиус насыпанной кучи материала, см,

1) Краткое изложение теории и цель работы.

2) Схема установки.

3) Таблица 2.

4) Вывод по работе.

Задание на подготовку к лабораторной работе .

1) Измельчение твёрдых материалов и их классификация .

2) Измельчение, грохочение и дозирование твёрдых тел .

Контрольные вопросы .

1) Объясните понятие «угол ссыпания».

2) Виды движения кускового материала по плоскости ссыпания.

3) Назовите факторы, от которых зависит величина угла ссыпания зернисто-кускового материала.

4) Объясните понятие «угол естественного откоса зернисто-кускового материала».

5) Назовите факторы, от которых зависит величина угла естественного откоса.

6) Скажите какая величина больше - угол ссыпания или угол естественного откоса, объясните почему.

7) Как изменяется величина угла ссыпания и угла естественного откоса при движении материала и плоскости, на которой он лежит?

8) Как угол естественного откоса зависит от влажности?

9) тонко или крупно измельчённый материал имеет больший угол естественного откоса?

10) Для чего необходимо знание углов естественного откоса и ссыпания?



просмотров