Классификация электрооборудования. Что такое действующая электроустановка? Как электроустановки классифицируют по напряжению

Классификация электрооборудования. Что такое действующая электроустановка? Как электроустановки классифицируют по напряжению

Так как в процессе эксплуатации возникает ряд спорных вопросов о том, какое оборудование может быть определено, как действующая электроустановка, стоит подробно рассмотреть основные нормативные документы ПТЭЭП и ПУЭ. Первый из которых является определяющим в отношении норм эксплуатации, а второй устанавливает требования к монтажу и проектированию.

Определение

В целом понятие электроустановки включает в себя всевозможные элементы, в которых может происходить передача, преобразование, распределение и последующее потребление электроэнергии. А под действующей электроустановкой следует понимать не только те устройства, линии или конструкции, через которые протекает электрический ток или в которые подано напряжение, но и все, которые в данный момент являются отключенными, но на них может возникнуть напряжение. При этом способ появления напряжения на электроустановке не имеет значения, это могут быть :

  • переключение коммутационных аппаратов;
  • нахождение вблизи оборудования, создающего ;
  • пересечение линий электропередач в вертикальной плоскости с другими линиями.
Пересечение линий электропередач

Поэтому для перевода действующей электроустановки в категорию недействующей недостаточно просто отключить рубильник или силовой выключатель. Для этого требуется сделать невозможным возникновение потенциала хоть с наличием, хоть без электрического соединения.

Назначение

Действующие электроустановки предназначены для передачи и перераспределения электрической энергии. Так как современные потребители электроэнергии характеризуются большим количеством чувствительных приборов с самым разнообразным принципом работы, электрические установки также должны обеспечивать и высокое качество поставляемой энергии. Если детально рассмотреть понятие электроустановки, то оно включает в себя не только устройства для передачи, и распределения, но также коммутационные и защитные аппараты. Поэтому еще одним назначением является своевременное отключение различных категорий потребителей и подача резервного или второго питания.

В зависимости от важности запитки электрической цепи выделяют три категории потребителей:

  • для первой категории может допускаться перерыв не более времени, требуемого для автоматического переключения на второе или резервное питание;
  • вторая допускает перерыв в питании не дольше чем на время выезда бригады или ввода второго источника вручную;
  • третья допускает перерыв в питании не более суток, а для единичных квартир и домов двое суток, но не чаще трех раз в год.

Классификация

В зависимости от параметра, действующие электроустановки подразделяются на такие виды. По уровню напряжения выделяют устройства до 1000 В и выше 1000 В. Каждая из категорий включает в себя все уровни напряжения, находящиеся в их пределах.

В зависимости от назначения выделяют следующие устройства:

  • Силовые – характеризуются большой величиной мощности, протекающего тока, высоким напряжением. Применяются, как правило, в промышленных масштабах для работы электрических сетей и электрических подстанций.
  • Преобразовательные – предназначены для преобразования одного рода тока в другой. Применяются в самых различных сферах.
  • Коммутационные – предназначены для произведения переключений в электрической схеме от высоковольтных до бытовых.
  • Электрооперационные – вспомогательное оборудование, которое может выполнять какие-либо технологические операции (нагрев, перемещение и т.д.).
  • Осветительные – предназначены для преобразования электрической энергии в световую.

По способу установки подразделяются на:


Примеры

В качестве примера действующих электроустановок можно рассматривать как конкретное оборудование, так и их группы. На практике, качестве действующих электроустановок следует выделить такие устройства:

  • Электрические машины (двигатели, трансформаторы, генераторы);
  • Линии, включающие в себя провода, опоры, кронштейны, изоляторы, кабели и прочее оборудование;
  • Выключатели (воздушные, масляные вакуумные и другие), разъединители и короткозамыкатели;
  • Выпрямительные и инверторные установки для преобразования;
  • Устройства защиты и борьбы с перенапряжениями, нормализации параметров электроэнергии.

Бытовых потребителей, в частности, проводку, распредщитки, приборы освещения и прочие аппараты также можно рассматривать в качестве примера действующей электроустановки.

Обслуживание

Следует отметить, что эксплуатация электроустановок должна осуществляться в соответствии с требованиями правил. Поэтому к обслуживанию электроустановок могут привлекаться только специально обученные работники, которые прошли проверку знаний по электробезопасности. Они обязаны производить периодический осмотр оборудования, техническое обслуживание, плановые и внеочередные ремонты, испытания электрооборудования и прочие манипуляции. При этом электротехнический персонал, обслуживающий электроустановки обязан заполнять соответствующие документы о проведении тех или иных видов работ.

Для постоянного контроля за рабочими режимами на практике применяется оперативное обслуживание действующих электроустановок. При этом осуществляется работа по выполнению коммутационных операций, осмотру устройств, допуску ремонтного и оперативного персонала. Фиксируются различные режимы работы, контролируется соответствие схем электроснабжения.

Меры безопасности

Для обеспечения безопасных условий работы в действующих электроустановках предусматривается ряд мероприятий. Которые должны реализовываться на всех этапах – до начала, во время и при окончании работ. Все мероприятия подразделяются на организационные и технические. Первые из них предусматривают организацию определенных действий в электроустановках (оформление работ, назначение ответственных, подготовку места работ, проведение инструктажей и т.д.). Вторые предусматривают конкретные манипуляции с устройствами электроустановок (коммутационные переключения, проверку наличия или отсутствия напряжения в токоведущих частях, установку защитных заземлений и прочие).

В зависимости от местных условий и сферы применения действующих электроустановок меры безопасности могут дополняться в соответствии с особенностями той или иной отрасли.

Классификация электроустановок и помещений

Проведенный анализ показывает, что опасность поражения человека электрическим током в электроустановках зависит от:

  1. напряжения электроустановки;
  2. режима нейтрали источника питания;
  3. тока замыкания на землю;
  4. сопротивления изоляции токоведущих частей относительно земли и заземленных конструкций;
  5. сопротивления тела человека;
  6. удельного сопротивления грунта в зоне растекания тока.

Условно все электроустановки можно разделить на:

  1. электроустановки до 1 кВ;
  2. электроустановки выше 1 кВ;
  3. электроустановки с малым напряжением (не более 42 В);
  4. электроустановки с малыми токами замыкания на землю (I з 500А);
  5. электроустановки с большими токами замыкания на землю (I з >500А).

«Правила устройства электроустановок» (ПУЭ) в отношении мер электробезопасности разделяет электроустановки на:

  1. электроустановки напряжением выше 1 кВ в сетях с глухозаземленной или эффективно-заземленной нейтралью;
  2. электроустановки напряжением выше 1 кВ в сетях с изолированной или заземленной через дугогасящий реактор или резистор нейтралью;
  3. электроустановки до 1 кВ в сетях с глухозаземленной нейтралью;
  4. электроустановки до 1 кВ в сетях с изолированной нейтралью.

К первой категории относятся электроустановки в сетях 220 кВ и выше работающие с глухим заземлением нейтралей трансформаторов, а также электроустановки в сетях 110-220 кВ, работающие с эффективно-заземленными нейтралями трансформаторов (у части трансформаторов данной сети нейтрали разземлены, либо в нейтрали некоторых трансформаторов включены специальные активные, реактивные или нелинейные сопротивления). Эффективно-заземленные нейтрали применяют для ограничения токов замыкания на землю.


Ко второй категории относятся электроустановки в сетях 3-35 кВ, работающие с изолированной нейтралью при относительно небольшом емкостном токе замыкания на землю, а также электроустановки 3-35 кВ, работающие в режиме резонансного заземления части нейтралей элементов сети. Заземление нейтралей через дугогасящие реакторы или резисторы применяется для ограничения токов замыкания на землю (для компенсации емкостных токов замыкания на землю).




Условия эксплуатации электроустановок также существенно влияют на опасность поражения. Так, влажность, повышенная температура, едкие пары, токопроводящая пыль изменяют сопротивление изоляции токоведущих частей электроустановки. Под их действием изменяется и сопротивление человека.


В отношении опасности поражения людей электрическим током помещения различаются на:


Помещения без повышенной опасности , в которых отсутствуют условия, создающие повышенную и особую опасность;


Помещения с повышенной опасностью , характеризующиеся наличием одного из следующих условий:

  1. высокая температура;
  2. возможность одновременного прикосновения человека к металлоконструкциям зданий, имеющих соединение с землей, технологическим аппаратом, механизмам и т.п., с одной стороны, и к металлическим корпусам электрооборудования (открытым проводящим частям), с другой.

Особо опасные помещения , характеризуются наличием одного из следующих условий:

  1. особая сырость;

Территория открытых электроустановок в отношении опасности поражения людей электрическим током приравнивается к особо опасным помещениям .


В таблицах 3.1 и 3.2 представлена классификация помещений по характеру окружающей среды и степени опасности поражения людей электрическим током.


По доступности электрооборудования помещения делятся на:


- закрытые электротехнические - закрытые на замок помещения, в которых установлено электрооборудование, не требующее постоянного надзора. Доступ в эти помещения разрешен только лицам из числа электротехнического персонала на непродолжительное время (помещения распределительных устройств до и выше 1 кВ);


Персонал электротехнический - административно-технический, оперативный, оперативно-ремонтный, ремонтный персонал, организующий и осуществляющий монтаж, наладку, техническое обслуживание, ремонт и управление режимом работы электроустановок (имеющий квалификационные группы II-V по электробезопасности).


- электротехнические - помещения или отгороженные части помещении, в которых установлено электрооборудование, требующее постоянного электротехнического персонала (помещения управления, машинный зал ГЭС и т.д.);


- производственные - помещения, в которых электрооборудование доступно в течение длительного времени электротехнологическому персоналу (мастерские);


Персонал электротехнологический - персонал, у которого в управляемом им технологическом процессе основной составляющей является электрическая энергия (например, электросварка, электролиз и т.д.), использующий в работе ручные электрические машины, переносной электроинструмент (где требуется II или более высокая группа по электробезопасности).


- служебные и бытовые - столовые, раздевалки, служебные конторские помещения, жилые комнаты и т.п.


Таблица 3.1. Классификация помещений по характеру окружающей среды

Класс помещения


Характеристика помещения



Относительная влажность воздуха не превышает 60%



Относительная влажность воздуха от 60 до 75%



Относительная влажность превышает 75%


Особо сырое


Относительная влажность воздуха близка к 100% (потолок, стены, пол и предметы, находящиеся в помещении, покрыты влагой)



Под воздействием различных тепловых излучений температура постоянно или периодически (более 1 суток) превышает +35 0 С



По условиям производства выделяется технологическая пыль, которая может оседать токоведущих частях, проникать внутрь машин, аппаратов и т.д.


С химически активной или органической средой


Постоянно или в течение длительного времени содержаться агрессивные пары, газы, жидкости, образуются отложения или плесень разрушающие изоляцию и токоведущие части электрооборудования.


Таблица 3.2. Классификация (по ПУЭ) помещений по степени опасности поражения людей электрическим током

Класс помещения


Характеристика помещения


Без повышенной опасности


Отсутствуют условия, создающие повышенную и особую опасность


С повышенной опасностью


  1. сырость или токопроводящая пыль;
  2. токопроводящие полы (металлические, земляные, железобетонные, кирпичные и т.п.);
  3. высокая температура;
  4. возможность одновременного прикосновения человека к металлоконструкциям зданий, имеющих соединение с землей, технологическим аппаратом, механизмом и т.п., с одной стороны, и к металлическим корпусам электрооборудования (открытым проводящим частям), с другой.

Особо опасные


Наличие одного из следующих условий:

  1. особая сырость;
  2. химически активная или органическая среда;
  3. одновременно два или более условий повышенной опасности.

Как разделяются электроустановки по условиям электробезопасности?

В соответствии с правилами устройства электроустановок ПУЭ электроустановки по условиям электробезопасности разделяются:

  • На электроустановки напряжением выше 1000 В в сетях с эффективно заземленной нейтралью с большими токами замыкания на землю.
  • На электроустановки напряжением выше 1000 В в сетях с изолированной нейтралью с малыми токами замыканиями на землю.
  • На электроустановки напряжением до 1000 В с заземленной нейтралью.
  • На электроустановки напряжением до 1000 В с изолированной нейтралью.

Какие факторы должны учитываться при выборе технических способов и средств защиты?
Технические способы и средства защиты обеспечивающие электробезопасность, должны устанавливаться с учетом:

  • Номинального напряжения, рода и частоты тока электроустановки.
  • Способа электроснабжения от стационарный сети, от автономного дизель генератора электроэнергией.
  • Режима нейтрали средней точки источника питания электроэнергией изолированная, заземленная нейтраль.
  • Вида исполнения стационарные, передвижные, переносные.
  • Характеристики помещений по степени опасности поражения электрическим током.
  • Возможности снятие напряжения с токоведущих частей, на которых или вблизи которых должна производиться работа.
  • Характера возможного прикосновения человека к элементам цепи тока однофазное прикосновение, двухфазное прикосновение, прикосновение к металлическим нетоковедущим частям, оказавшимся под напряжением.
  • Возможности приближения к токоведущим частям, находящимся под напряжением, на расстояние меньше допустимого или попадания в зону растекания тока.
  • Видов работ: монтаж, наладка, испытание, эксплуатация электроустановок.

Что может быть использовано в качестве источника малого напряжения?
Источниками малого напряжения могут быть специальные с вторичным напряжением 12-36В, батареи гальванических элементов , выпрямительные установки и преобразователи. В понижающих трансформаторах, чтобы обеспечить безопасность при переходе напряжения сети из первичной оболочки со стороны высшего напряжения во вторичную обмотку, со стороны низшего напряжения последнюю заземляют. Применения для получения малого напряжения не допускается. В этом случае сеть малого напряжения оказывается электрически связанно с сетью высшего напряжения, что небезопасно.

Какие требования должны выполняться при применении разделяющих или понижающих трансформаторов?
В электроустановках напряжением до 1000В в местах, где в качестве защитной меры применяются разделяющие или понижающие трансформаторы, вторичное напряжение трансформаторов должно быть, для разделяющих не более 380В, для понижающих не более 42В. При применении этих трансформаторов необходимо руководствоваться следующим.

Разделяющие трансформаторы должны удовлетворять специальным техническим условиям в отношении повышенной надежности конструкции и повышенных испытательных напряжений.

От разделяющего трансформатора разрешается питание только одного электроприемника с номинальным током плавкой вставки или расцепителя автомата на первичной стороне не более 15А. Заземление вторичной оболочки разделяющего трансформатора не допускается. Корпус трансформатора в зависимости от режима нейтрали сети, питающей первичную обмотку, должен быть заземлен или занулен. Заземление корпуса электроприемника, присоединенного к такому трансформатору, не требуется.

Понижающие трансформаторы со вторичным напряжением 42В и ниже могут быть использованы в качестве разделяющих, если они удовлетворяют требованиям. Если понижающие трансформаторы не являются разделяющими, то в зависимости от режима нейтрали сети, питающей первичную обмотку, следует заземлять или занулять корпус трансформатора, а также один из выходов одну из фаз или нейтраль среднюю точку вторичной обмотки.

Каковы схемы включения разделяющих трансформаторов?
Схемы включения разделяющих трансформаторов выглядят следующим образом. Вторичная обмотка разделяющего трансформатора или корпус электроприемника, питающегося через него, не должны иметь ни заземления, ни связи с сетью зануления. Тогда при прикосновении к частям, находящимся под напряжением, или к корпусу с поврежденной изоляцией не создается опасность, поскольку вторичная сеть коротка и сила токов утечки в ней и емкостных токов ничтожно мала при исправной изоляции.

Если возникшее замыкание одной фазе точке А не будет восстановлено, а затем повредится изоляция на другой фазе вторичной цепи, то предохранитель может сгореть только при металлической связи между точками А и В. Если такой связи нет, на корпусе электроприемника будет напряжение по отношению к земле, величина которого зависит от соотношения. Это напряжение если вторичное напряжение превышает соответственно 12 и 42 В может оказаться опасным, если человек стоит на земле или на токопроводящем полу и обувь имеет малое сопротивление. Чтобы уменьшить вероятность двойных замыканий на землю, к разделяющим трансформаторам на вторичной стороне нельзя подключать сколько-нибудь разветвленную сеть. Так, при двух и более электроприемниках возможно замыкание в них со связью с землей в двух разных фазах. Такие двойные замыкания влекут за собой электропоражения. Поэтому каждый электроприемник должен иметь свой разделяющий трансформатор.

Каковы особенности эксплуатации передвижных электроустановок?
Передвижные электроустановки с точки зрения электробезопасности имеют свои особенности эксплуатации, которые определяют прежде всего преимущественно тяжелыми условиями применения, источники электроэнергии и исполнительные механизмы работают, как правило, под открытом небом, кабельные сети подвержены механическим воздействиям, на единицу установленной мощности имеется гораздо большее количество контактных соединений, штепсельных муфт и разъемов чем в стационарных установках. Кроме того, передвижные электроустановки из-за открытого расположения на местности доступны лицам, которые выполняют те или другие работы с применением механизмов и устройств, получающих электроэнергию от передвижных источников. Все это существенно ухудшает электробезопасность в передвижных установках. От сюда электроустановки, из электрические схемы и конструктивное исполнение требует весьма квалифицированного и грамотного технического обслуживания.

Каковы основные условия безопасности в передвижных электроустановках?
В передвижных электроустановках в соответствии с действующим стандартом принят как обязательный режим изолированной нейтрали. При ограниченной протяженности сети с ограниченным числом потребителей электроэнергии безопасность эксплуатации может быть обеспечена поддержанием сопротивления изоляции на определенном заданном уровне. Тогда прикосновение к токоведущей части или к корпусу, на которых произошло замыкания фазы, не опасно. Только двухфазное замыкание, т.е. замыкание на землю или на корпус двух разных фаз, будет опасным режимом и должно ликвидироваться защитным отключением. Следовательно, сочетание постоянного контроля сопротивления изоляции с быстродействующим защитным отключением необходимое условие безопасного обслуживания передвижных электростанций с изолированной нейтралью.

Может ли осуществляться в одном помещении заземление одних электроприемников и зануление других?
В трансформаторе или генераторе с заземленной нейтралью заземление электроприемников без соединения с нейтралью т.е. без зануления недопустимо. В одном помещении могут находиться электроприемники, питаемые от трансформаторов и генераторов с изолированной нейтралью и с заземленной нейтралью, например 6 кВ и 380/220В др. Их сети заземления и зануления разделить трудно и большей частью невозможно. Надо, чтобы совмещенная сеть заземления и зануления удовлетворяла требованиям как к заземлению, так и занулению.

Что положено в основу выбора режима нейтрали?
Выбор схемы сети, а следовательно, и режима нейтрали источника тока производят исходя из технологических требований и условий безопасности. При напряжении до 1000 В широкое распространение получили обе схемы трехфазных сетей, трехпроводная с изолированной нейтралью и четырехпроводная с заземленной нейтралью. По технологическим требованиям предпочтение часто отдается четырехпроводной сети, она использует два рабочих напряжения линейное и фазное. Так, как от четырехпроводной сети 380 В можно питать как силовую нагрузку трехфазную, включаю ее между фазными проводами на линейное напряжение 380 В, так и осветительную, включая между фазным и нулевым проводами на фазное напряжение 220В. При этом становиться значительно дешевле электроустановка за счет применения меньшего чмсла трансформаторов, меньшего сечения проводов.

По условиям безопасности выбирают одну из двух сетей исходя из положения, по условиям прикосновения к фазному проводу в период нормального режима работы сети более безопасной является сеть с изолированной нейтралью, а в аварийный период сеть с заземленной нетралью. Поэтому сети с изолированной нейтралью целесообразно применять, когда имеется возможность поддерживать высокий уровень изоляции сети и когда емкость сети относительно земли незначительна. Это могут быть мало разветвленные сети, не подверженные воздействию агрессивной среды и находящиеся под постоянным надзором квалифицированного персонала. Примером могут служить сети небольших предприятий передвижные установки.

Сети с заземленной нейтралью применяют там, где невозможно обеспечить хорошую изоляцию электроустановок из-за высокой влажности, агрессивной среды и пр. или нельзя быстро отыскать и устранить повреждения изоляции, когда емкостные сети вследствие значительной ее разветвленности достигают больших значений, опасных для жизни человека. К таким сетям относятся сети крупных промышленных предприятий, городские распределительные и пр. Существующие мнение о более высокой степени надежности сетей с изолированной нейтралью недостаточно обоснованно.

Статические данные указывают, что по условиям надежности работы обе сети практически одинаковы. При напряжение выше 1000 В вплоть до 35 кВ сети по технологическим причинам имеют изолированную нейтраль, а выше 35 кВ заземленную. Поскольку такие сети имеют большую емкость проводов относительно земли, для человека одинаково опасно прикосновение к проводу сети как с изолированной, так с с заземленной нейтралью. Поэтому режим нейтрали сети выше 1000 В по условиям безопасности не выбирается.

Как защищать людей от поражения электрическим током при прикосновении к металлическим корпусам торговых киосков, автоматов газированной воды, летних павильонов и навесов разных торговых учреждений, указателей переходов через улицы и других металлоконструкций имеющих на себе электропроводку освещения 380/220В? Основной защитой людей в данном случае служит система зануления. Эффективность ее работы может быть обеспечена, если выполнены требования, предъявляемые к ней. В частности, правильно выбраны сечения фазного и нулевого проводов, предохранители, автоматы равномерно распределена нагрузка, правильно и квалифицированно ведется эксплуатация например, исключается замена местами фазного и нулевого проводов. В соответствии с правилами упомянутые объекты должны быть занулены либо получать питание через разделительные трансформаторы без зануления на вторичном напряжении. Однофазные ответвления к этим объектам для безопасности выполняют тремя проводами фазным, нулевым и защитным зануляющим, присоединенным к нулевому проводу в месте ответвления.

Что понимается под малым напряжением?
Малым называется номинальное напряжение не более 42 В, используемое для уменьшения опасности поражения электрическим током. Применение малых напряжений резко снижает опасность поражения, особенно когда работа ведется в помещении с повышенной опасностью, особо опасном или вне помещения. Однако электроустановки и с таким напряжением представляют опасность, причем значительную при двухфазном прикосновении.

Малые напряжения используют для питания электроинструмента, светильников стационарного местного освещения например, установленных на металлорежущих станках, переносных ламп в помещениях с повышенной опасностью и особо опасных, а также светильников общего освещения обычной конструкции, если они размещены над полом на высоте менее 2,5 м имеют в качестве источников света лампы накаливания.

Их использование является эффективной мерой защиты, однако область ее применения невелика, что обусловлено трудностями создания протяженных сетей и мощных электроприемников малого напряжения. Известно что уменьшения напряжения ведет к возрастанию силы тока, поэтому возникает необходимость в увеличении сечения проводов и токоведущих частей электроустановки, что экономически невыгодно.

Чем характеризуется электрическое разделение сети?
Под электрическим разделением сети понимается разделение сети на отдельные, не связанные между собой участки. Для этого применяют разделяющие трансформаторы, которые изолируют электроприемники от общей сети, и следовательно, предотвращают воздействие на них возникающих в сети токов утечки, емкостных проводимостей, замыканий на землю, последствий повреждений изоляции, исключают обстоятельства, которые повышают вероятность электропоражения. Применение разделяющих трансформаторов лучшая мера, чем питание через понижающие трансформаторы с заземлением вторичных обмоток. Защитное разделение сетей обычно используют в электроустановках напряжением до 1000 В, эксплуатация которых связана с особой и повышенной опасностью передвижные электроустановки, ручной электрифицированный инструмент.

Что необходимо для обеспечения электробезопасности работ в цепях трансформаторов тока и напряжения?
Для обеспечения безопасности работ, проводимых в цепях измерительных приборов и устройств релейной защиты, все вторичные обмотки измерительных трансформаторов тока и напряжения должны иметь постоянное заземление. В сложных схемах релейной защиты для группы электрически соединенных вторичных обмоток трансформаторов тока независимо от их числа допускается заземление только в одной точке. При необходимости разрыва токовой цепи измерительных приборов и реле цепь вторичной обмотки трансформатора тока должна быть предварительно закорочена на специально предназначенных для этого зажимах. Запрещается производить в цепях между трансформатором тока и зажимами, где установлена закоротка, работы, которые могут привести к размыканию цепи. При работе на трансформаторах тока или в их вторичных цепях необходимо соблюдать следующие меры безопасности.

Шины первичных цепей не должны использоваться в качестве вспомогательных токопроводов при монтаже или токоведущих цепей при сварочных работах.

Присоединение к зажимам указанных трансформаторов тока цепей измерений и защиты должно производиться после полного окончания монтажа вторичных схем.

При проверке полярности приборы, которыми она производиться, до подачи импульса тока в первичную обмотку должны быть надежно присоединены к зажимам вторичной обмотки. При работах в цепях трансформаторов с подачей напряжения от постороннего источник необходимо вынуть предохранители со стороны высшего и низшего напряжения и отключить автоматы от вторичных обмоток.

Каковы основные правила электробезопасности при эксплуатации внутреннего освещения?
Главным условием обеспечения надежности и безопасности эксплуатации является проведение осмотров и проверки осветительной сети в установленные сроки:

  • Исправность автомата и аварийного освещения не реже одного раза в три месяца в дневное время.
  • Исправность системы аварийного освещения не реже одного раза в квартал.
  • Состояние стационарного оборудования и электропроводки рабочего и аварийного освещения на соответствие номинальным токам расцепителей и плавких вставок расчетным один раз в год.
  • Испытание и измерение сопротивления изоляции проводов и кабелей и заземляющих устройств один раз в три года.
  • Измерение нагрузок и величин напряжения в отдельных точках электрической сети один раз в год.
  • Испытание изоляции стационарных трансформаторов с вторичным напряжением 12-36В не реже одного раза в год, переносных трансформаторов один раз в три месяца.

Следует иметь в виду, что установка и очистка светильников, смена перегоревших ламп и плавких вставок, ремонт сети выполняется электротехническим персоналом при снятом напряжении. Недопустимо питание светильников, требующих применения напряжения 36 В и ниже, от автотрансформаторов.

В чем заключаются основные требования электробезопасности, предъявляемые к сварочному оборудованию?
На электросварочную установку сварочный трансформатор, агрегат, сварочный генератор, преобразователь, выпрямитель должны быть паспорт, инструкция по эксплуатации и инвертарный номер, под которым она записана в журнале учета и периодических осмотров.

В качестве источников сварочного тока могут применяться трансформаторы, выпрямители и генераторы постоянного тока, специально для этого предназначенные. Непосредственное питание сварочной дуги от силовой или осветительной распределительной цеховой сети не допускается. Источники сварочного тока можно присоединять к распределительным электрическим сетям напряжением не выше 660 В. Нагрузка однофазных сварочных трансформаторов равномерно распределяется между отдельными фазами трехфазной сети. В передвижных электросварочных установках для подключения их к сети следует предусматривать блокирование рубильников, исключающее возможность присоединения и отсоединения провода, когда зажимы находятся под напряжением. Электросварочные установки должны включать в электросеть и отключать от нее, а также ремонтировать только электромонтеры. Выполнять эти операции сварщиком запрещается. Длина первичной цепи между пунктом питания и передвижной сварочной установкой не должна превышать 10 м. Токоведущие части сварочной цепи необходимо надежно изолировать и защищать от механических повреждений. Сопротивление изоляции электрических цепей установки измеряют при текущих ремонтах в соответствии с ГОСТом на эксплуатируемое электросварочное оборудование. Сроки текущих и (капитальных ремонтов сварочных установок) определяет лицо, ответственное за электрохозяйство предприятия, исходя из местных условий и режима эксплуатации, а также указаний завода изготовителя. Установку и пусковую аппаратуру следует осматривать и чистить не реже одного раза в месяц. Все отрытые части сварочной установки, находящиеся под напряжением питающей сети, надежно ограждаются. Сопротивление изоляции необходимо проверять не реже одного раза в три месяца, а при автоматической сварке под флюсом один раз в месяц. Изоляция должна выдерживать напряжение 2 кВ в течение 5 мин. Корпуса электросварочного оборудования, агрегатов, сварочные столы, плиты и т.д., а также обратные провода заземляются.

Для защитного заземления корпуса источников питания, снабженные специальными болтами, присоединяют к проводу заземляющего устройства. Свариваемое изделие также заземляют. При этом каждую сварочную установку необходимо непосредственно соединять с заземляющим проводом. Последовательное соединение установок между собой и применение общего заземляющего провода для группы установок не допускается. Несоблюдение этого требования может привезти к тому, что при обрыве провода, последовательно соединяющего установки, некоторые из них окажутся незаземленными. Сопротивление заземления при напряжении до 1000 В должно быть не более 4 Ом. Разрешается не заземлять корпус двигателя, подающего электродную проволоку, если он установлен на корпусе сварочной головки и имеет с ней надежный металлический контакт.

Что можно использовать в качестве обратного провода при электросварке?
В качестве обратного провода, соединяющего свариваемое изделие с источником сварочного тока, можно использовать гибкие провода, а также, где это возможно, стальные шины любого профиля достаточного сечения, сварочные плиты и саму свариваемую конструкцию. Использование в качестве обратного провода сети заземление металлических строительных конструкций зданий, коммуникаций и не сварочного технологического оборудования запрещается. Зажим вторичной обмотки сварочного трансформатора, к которому подключается обратный провод, а также аналогичны зажимы сварочных выпрямителей и генераторов, к которым возбуждения подключается к распределительной электрической сети без разделительного трансформатора, следует заземлять. Отдельные элементы, используемые в качестве обратного провода, тщательно соединяют между собой сваркой или с помощью болтов, струбцин или зажимов. В установках для дуговой сварки в случае необходимости например, при выполнении круговых швов допускается соединение обратного провода со свариваемым изделием с помощью скользящего контакта.

Как подразделяются электрические изделия, выпускаемые промышленностью по способу защиты человека от поражения электрическим током?
Все электрические изделия по способу защиты человека от поражения электрическим током подразделяются на пять классов:

  • К классу 01 относятся изделия, имеющие рабочую изоляцию и без наличия элементов заземления или другой защиты от поражения электрическим током.
  • К классу 1 относятся изделия, имеющие рабочую изоляцию и элемент для заземления. В случае, если у изделия класса 1 есть провод для присоединения к источнику питания, то он должен иметь заземляющую жилу и вилку с заземляющим контактом для включения с специальную розетку с дополнительным гнездом.
  • К классу 2 относятся изделия, имеющую двойную изоляцию или усиленную изоляцию и без элементов для заземления.
  • К классу 3 относятся изделия, не имеющие ни внутренних, ни внешних электрических цепей выше 42В.

К каким классам по способу защиты человека от поражения электрическим током относятся бытовые электроприборы?
Большинство бытовых электроприборов выпускается класса 0. Ввиду отсутствия в быту заземления электрические приборы и машины классов 01 и 1 для быта не могу быть использованы. Электроизделия класса 3 не нашли широкого применения в быту, кроме электрической игрушки. Из всех классов защиты, обеспечивающих определенную электробезопасность приборов, следует отдать предпочтение классу 2. В настоящее время значительное количество машин и аппаратов электробритвы, полотеры, стиральные машины выпускаются 2 класса защиты. Однако и их нельзя считать вполне безопасными, питающий машинку провод как и вся электропроводка квартирной сети при нарушении изоляции может стать источником электротравмы. Это положение усугубляется тем, что периодическая проверка состояния изоляции в бытовых сетях, к сожалению, не производится.

В каких электроустановках должно быть выполнено заземление или зануление?
Заземление или зануление электроустановок следует выполнять, при напряжении 380 В и выше переменного тока и 440 В и выше постоянного тока во всех случаях. При номинальных напряжениях от 42 В до 380 В переменного тока и от 110 до 440 В постоянного тока при работах с повышенной опасностью и особо опасных.

Заземление или зануление электроустановок не требуется при номинальных напряжениях до 42 В переменного тока и до 110 В постоянного тока кроме электроустановок во взрывоопасных зонах любого класса.

Адреса и контакты

Адрес: Россия, г. Москва, Пятницкое шоссе дом 18. м. Волоколамское

Условия применения электрооборудования отличаются большим разнообразием:

1) климатических факторов ( , влажность, осадки, солнечное излучение, наличие пыли);

2) агрессивных химических и органических сред;

3) степеней защит от взрывов и пожаров;

4) степеней защит персонала.

Эти условия оказывают существенное влияние на безопасность, безотказность и эффективность работы различного оборудования.

Для обеспечения высокого уровня безопасности и надёжности электрооборудование, применяемое в электроустановках, по конструктивному исполнению должно соответствовать определённым условиям его работы.

Эти обстоятельства должны учитываться при:

1) проектировании электроустановок;

2) выполнении организационных и технических мер;

3) производстве монтажных работ;

4) ремонте и эксплуатации электрооборудования.

Для выполнения единых требований по устройству электроустановок и электропомещений, установления области применения электрооборудования с определёнными конструктивными особенностями, обеспечению надёжной его работы в соответствующих условиях и режимах работы, а также для выполнения требований безопасного производства работ нормативными документами – введена определённая классификация .

Электроустановки (ЭУ) – совокупность машин, аппаратов, линий электропередач и вспомогательного оборудования (вместе с помещениями), предназначенных для производства, преобразования, трансформации, передачи, распределения и преобразования электрической энергии в другие виды энергии.

1) По условиям защиты от атмосферных воздействий:

Открытые (наружные) – не имеющие защиты;

Закрытые (внутренние) – размещённые внутри помещений.

2) По условиям электробезопасности – с :

Свыше 1000 В – более высокие требования по устройству, конструктивному исполнению, квалификации персонала, выполнению организационных и технических мероприятий.

Электропомещения – помещения или часть их (отгороженная), в которых расположено электрооборудование (ЭУ), доступные только для квалифицированного обслуживающего персонала (специальная подготовка, ТБ, экзамены, квалификация).

Классифицируются ЭП (по ПУЭ):

1. По характеру окружающей среды (относительная влажность):

Сухие – влажность до 60 %;

Влажные – влажность от 60 до 75 %;

Сырые – влажность более 75 %;

Особо сырые – влажность до 100%, пол, стены, потолок, предметы покрыта влагой;

Жаркие – температура постоянно или периодически (более 1 суток) превышает +35 С;

Пыльные – по условиям производства выделяется технологическая пыль в количествах достаточных для оседания на оборудовании и проникания внутрь (токопроводящая и нетокопроводящая) последняя способствует увлажнению;


С химически активной или органической средой (агрессивные газы, плесень, отложения, насекомые), которая может разрушать изоляцию и токоведущие части.

2. По опасности поражения людей электрическим током различают помещения:

С повышенной опасностью (сырость, токопроводящая пыль, токопроводящие полы, высокая температура, возможность одновременного прикосновения человека к корпусам электрооборудования и к заземлённым конструкциям, аппаратам, механизмам).

Хотя бы наличие одного из этих факторов.

Особо опасные (особая сырость, химически активные или органические среды, одновременное наличие двух и более факторов повышенной опасности);

Без повышенной опасности – отсутствие факторов повышенной или особой опасности.

3. По степени возможности образования взрывоопасных смесей взрывоопасные зоны ЭУ распределяются на классы.

Вместо помещений – зоны, которые могут занимать всё помещение или его часть. Эти зоны определяются технологами с электриками при проектировании или эксплуатации. ПУЭ установлены следующие классы взрывоопасных зон:

B-I – зоны, выделяются где газы или пары ЛВЖ, которые могут образовывать с воздухом взрывоопасные смеси при нормальных условия работы;

B-Iа – тоже самое, но при авариях или неисправностях;

B-Iб – отличие от B-Iа –наличие горючих газов с резким запахом, газообразного водорода, лаборатории с небольшим количеством газов или ЛВЖ;

B-Iг – пространство у наружных установок и технологических установок с горючими газами и ЛВЖ.

Размеры взрывоопасных зон – 0,5 20 м по вертикали и горизонтали от места образования взрывоопасных смесей.

B-II – зоны в помещениях, где возможно образование взрывоопасных смесей воздуха с горючей пылью или волокном в нормальных условиях;

B-IIа –тоже самое, но при авариях и неисправностях.

К взрывоопасным относятся также помещения не имеющие взрывоопасных технологий и материалов, но отделённые от взрывоопасных стенами.

4. По степени образования горючих веществ.

Пожароопасные помещения или наружные установки – в которых периодически или постоянно обращаются, применяются, хранятся или образуются при нормальных технологических процессах горючие вещества.

По степени опасности также помещения подразделяются на пожароопасные зоны следующих классов:

П-I – зоны в которых обращаются горючие жидкости с С вспышки выше 61 С;

П-II – зоны в помещениях которых выделяются горючие пыли или волокна с пределом воспламенения более 65 к объёму воздуха;

П-IIа – зоны в помещениях, содержащих твёрдые горючие вещества;

П-III – зоны вне помещений, содержащие горючие жидкости с С вспышки выше 61 С или твёрдые горючие вещества.

Требования безопасности зависят от вероятности и возможной тяжести электропоражения в тех или иных условиях эксплуатации электрооборудования. Поскольку сопротивление тела человека непостоянно, трудно оценивать условия безопасности по току, который может проходить через тело человека при электропоражении. Поэтому электроустановки классифицируют по значению напряжения. Различают установки с номинальным напряжением до и выше 1000 В. Иногда и внутри этих групп установок требования безопасности зависят от конкретных номинальных напряжений. Применяют, например, термин «малое напряжение» - это номинальное напряжение 42 В и меньше по Правилам устройства электроустановок или 50 В и менее по ГОСТ Р 50571.10-96.
Безопасность обслуживания электрооборудования зависит от характера среды, в которой оно работает. Например, жара и влажность способствуют быстрому ухудшению изоляции, снижению сопротивления кожи человека. По степени опасности поражения электрическим током помещения делят на три класса: помещения без повышенной опасности, в которых отсутствуют признаки помещений двух других классов; помещения с повышенной опасностью, имеющие один из следующих признаков: с относительной влажностью воздуха, длительно превышающей 75 % (сырые); с проводящей пылью, выделяющейся по условиям производства в таком количестве, что она может оседать на проводах, проникать внутрь машин и аппаратов и ухудшать их изоляцию или охлаждение; с токопроводящими полами (земляные, сырые деревянные); жаркие - с температурой более 35 °С, держащейся постоянно или периодически более 1 сут; с возможностью одновременного прикосновения человека к металлическим корпусам электрооборудования с одной стороны и к соединенным с землей металлоконструкциям здания или механизмам - с другой. Опасность прикосновения к корпусу электроприемника с поврежденной изоляцией или к токоведущим жилам проводов больше, если человек одновременно касается заземленных труб, радиаторов отопления или стоит на земле, особенно босиком или в сырой обуви; помещения особо опасные, имеющие один из следующих признаков: особо сырые (относительная влажность воздуха близка к 100%, при этом потолок, стены и все предметы покрыты влагой); с химически активными парами, газами или плесенью, грибками, разрушающими изоляцию; имеющие одновременно два или более признаков помещений с повышенной опасностью.
К помещениям первого класса относят учебные лаборатории, где электрическая аппаратура установлена достаточно далеко от радиаторов и труб отопления и водопровода, связанных с землей; ко второму классу - склады с земляными полами; к третьему классу - теплицы, бани, коровники.
Различают не помещения, а условия повышенной или особой опасности, которые могут быть и вне помещений. Причем жаркими считают не только условия при температуре более 35 °С длительно, но и более 40 °С кратковременно. Особо сырые условия, когда на рабочем месте снег, дождь, частое обрызгивание. Требования к персоналу, обслуживающему электроустановки. По своей квалификации в вопросах техники безопасности все лица, обслуживающие действующие электроустановки, делятся на пять групп.
Возраст для I...IV групп должен быть не менее 18 лет. Только практиканты институтов, техникумов и профессионально-технических училищ, имеющие группы I и II, могут работать с 17 лет. Лиц, не достигших 18 лет, нельзя использовать на работах, к которым не допускаются подростки: на монтаже кабельных муфт, на верховых работах на линиях (при высоте более 3 м от земли до ног), на работах без снятия высокого напряжения, при электроизоляционных работах с применением эпоксидно-фенольных смол и лаков.
К группе I относятся лица, проходящие инструктаж при поступлении на работу и затем периодически не реже 1 раза в квартал и связанные с обслуживанием электроустановок, но не обладающие электротехническими знаниями. Они должны иметь элементарное представление об опасности электрического тока и мерах безопасности при работах в электроустановках, а также практически ознакомиться с приемами по оказанию первой помощи. К этой группе относятся ученики-электромонтеры; уборщицы, работающие в электроустановках, водители автокранов, операторы машинного доения, лица, работающие с электрифицированным инструментом, строительные рабочие. Группу I присваивает им ответственный за электрохозяйство или по его поручению лицо с квалификационной группой III после инструктажа и проверки знания безопасных методов работы на обслуживаемой электрифицированной машине или другом рабочем месте. Присвоение группы фиксируется в журнале с подписями проверяющего знания и проверяемого. Выдавать удостоверения не требуется.

Лица группы II (и выше) должны ежегодно проходить проверку на знания правил техники безопасности. К этим лицам предъявляют следующие требования: стаж работы на данной установке должен составлять не менее 1 мес или после обучения по программе не менее 72 ч, для практикантов профессионально-технических училищ, техникумов и институтов стаж не нормируется; они должны иметь элементарные технические знания по устройству электроустановок; иметь отчетливое представление об опасности электрического тока; им необходимо знать основные меры предосторожности при работах в электроустановках и приобретать практические навыки оказания первой помощи (например, на манекене-тренажере).
Группу II могут иметь электромонтеры и электрослесари; уборщицы, связанные с работой в устройствах напряжением выше 1000 В, такелажники, шоферы, связисты. Группы не совпадают с рабочими разрядами.
К лицам группы III предъявляют следующие требования: общий стаж их работы в электроустановках должен составлять для различных категорий персонала 1...5 мес работы с группой II (в частности, у практикантов институтов и техникумов - не менее 3 мес). Причем для работающих в установках напряжением выше 1000 В стаж учитывается только по этим установкам (также и для последующих групп); им необходимо знать устройство и порядок обслуживания электроустановки. Они должны отчетливо представлять, в чем заключается опасность работы в электроустановках; знать общие правила техники безопасности и, в частности, правила допуска к работам в электроустановках, а также специальные правила техники безопасности по тем видам работ, которые входят в их обязанности; уметь обеспечивать безопасное ведение работ и вести надзор за безопасностью работающих в электроустановках; обязаны знать правила оказания первой помощи и уметь ее оказывать. К этой группе относятся оперативный персонал подстанций, дежурные электрики цехов, электромонтеры.
Лицам группы IVнеобходимо следующее: иметь стаж работы в электроустановках не менее 2...6 мес в предыдущей группе (для окончивших техникум по электротехнической специальности - стаж не менее 3 мес в предыдущей группе); знать электротехнику в объеме специализированного профтехучилища; иметь полное представление об опасностях при работах в электроустановках; знать правила техники безопасности, в частности правила использования и испытания защитных средств, применяемых в электроустановках; знать установки настолько, чтобы свободно разбираться, какие именно элементы должны быть отключены для выполнения работ, уметь находить их в установке и проверять выполнение мер безопасности, организовать безопасное выполнение работ в электроустановках напряжением до 1000 В и обучать персонал правилам безопасности. К группе IV относятся: старшие электромонтеры, оперативный персонал электростанций, начинающие инженеры и техники.
Лицам группы Vb отличие от предыдущих желательно иметь стаж работы в электроустановках в предыдущей группе не менее 3... 24 мес (для лиц с законченным высшим или средним электротехническим образованием стаж 3 мес); четко представлять себе, чем вызвано каждое требование правил безопасности; уметь организовать безопасное проведение работ в установке напряжением как до 1000 В, так и выше; знать схемы и оборудование своего участка. Эту группу могут иметь старшие монтеры, мастера, техники, инженеры.
Знание правил эксплуатации электроустановок и правил техники безопасности при их обслуживании проверяют ежегодно у персонала, непосредственно обслуживающего действующие электроустановки, или выполняющего в них наладочные, электромонтажные и ремонтные работы или профилактические испытания, а также у лиц, организующих эти работы. Инженерно-технические работники, не относящиеся к перечисленному персоналу, проходят проверку знаний по технике безопасности 1 раз в 3 года. Результаты проверки отмечаются в удостоверении, где указываются присвоенная владельцу квалификационная группа и даты проверки и медосмотра.



просмотров