Логические парадоксы примеры. Занимательная и парадоксальная логика. Парадокс Журдена с карточкой

Логические парадоксы примеры. Занимательная и парадоксальная логика. Парадокс Журдена с карточкой

Логика. Учебное пособие Гусев Дмитрий Алексеевич

4.10. Парадоксы-антиномии

4.10. Парадоксы-антиномии

От софизмов следует отличать логические парадоксы (греч. paradoxos – неожиданный, странный). Парадокс в широком смысле слова – это нечто необычное и удивительное, то, что расходится с привычными ожиданиями, здравым смыслом и жизненным опытом. Логический парадокс – это такая необычная и удивительная ситуация, когда два противоречащих суждения не только являются одновременно истинными (что невозможно в силу логических законов противоречия и исключенного третьего), но еще и вытекают друг из друга, друг друга обуславливают. Если софизм – это всегда какая-либо уловка, преднамеренная логическая ошибка, которую в любом случае можно обнаружить, разоблачить и устранить, то парадокс представляет собой неразрешимую ситуацию, своего рода мыслительный тупик, «камень преткновения» в логике: за всю ее историю было предложено множество разнообразных способов преодоления и устранения парадоксов, однако ни один из них, до сих пор, не является исчерпывающим, окончательным и общепризнанным.

Наиболее известный логический парадокс – это парадокс «лжеца». Часто его называют «королем логических парадоксов». Он был открыт еще в Древней Греции. По преданию, философ Диодор Кронос дал обет не принимать пищи до тех пор, пока не разрешит этот парадокс и умер от голода, так ничего и не добившись; а другой мыслитель – Филет Косский впал в отчаяние от невозможности найти решение парадокса «лжеца» и покончил с собой, бросившись со скалы в море. Существует несколько различных формулировок данного парадокса. Наиболее коротко и просто он формулируется в ситуации, когда человек произносит простую фразу: «Я лжец». Анализ этого элементарного и бесхитростного на первый взгляд высказывания приводит к ошеломляющему результату. Как известно, любое высказывание (в том числе и вышеприведенное) может быть истинным или ложным. Рассмотрим последовательно оба случая, в первом из которых высказывание «Я лжец» является истинным, а во втором – ложным.

1. Допустим, что фраза «Я лжец» истинна, т. е. человек, который произнес ее, сказал правду , но в этом случае он действительно лжец, следовательно, произнеся данную фразу, он солгал .

2. Допустим, что фраза «Я лжец» ложна, т. е. человек, который произнес ее, солгал , но в этом случае он не лжец, а правдолюб , следовательно, произнеся данную фразу, он сказал правду. Получается нечто удивительное и даже невозможное: если человек сказал правду, то он солгал; а если он солгал, то он сказал правду (два противоречащих суждения не только одновременно истинны, но и вытекают друг из друга).

Другой известный логический парадокс, обнаруженный в начале XX века английским логиком и философом Бертраном Расселом, – это парадокс «деревенского парикмахера». Представим себе, что в некой деревне есть только один парикмахер, бреющий тех ее жителей, которые не бреются сами. Анализ этой незамысловатой ситуации приводит к необыкновенному выводу. Зададимся вопросом: может ли деревенский парикмахер брить самого себя? Рассмотрим оба варианта, в первом из которых он сам себя бреет, а во втором – не бреет.

1. Допустим, что деревенский парикмахер сам себя бреет , но тогда он относится к тем жителям деревни, которые бреются сами и которых не бреет парикмахер, следовательно, в этом случае, он сам себя не бреет .

2. Допустим, что деревенский парикмахер сам себя не бреет , но тогда он относится к тем жителям деревни, которые не бреются сами и которых бреет парикмахер, следовательно, в этом случае, он сам себя бреет . Как видим, получается невероятное: если деревенский парикмахер сам себя бреет, то он сам себя не бреет; а если он сам себя не бреет, то он сам себя бреет (два противоречащих суждения являются одновременно истинными и взаимообуславливают друг друга).

Парадоксы «лжеца» и «деревенского парикмахера» вместе с другими подобными им парадоксами также называют антиномиями (греч. antinomia – противоречие в законе), т. е. рассуждениями, в которых доказывается, что два высказывания, отрицающие друг друга, вытекают одно из другого. Считается, что антиномии представляют собой наиболее резкую форму парадоксов. Однако, довольно часто термины «логический парадокс» и «антиномия» рассматриваются как синонимы.

4.12. Парадоксы-апории Отдельной группой парадоксов являются апории (греч. aporia – затруднение, недоумение) – рассуждения, которые показывают противоречия между тем, что мы воспринимаем органами чувств (видим, слышим, осязаем и т. п.) и тем, что можно мысленно

Парадоксы времени Предыдущая глава фактически была посвящена проблеме существования мира в пространстве, теперь же обратим внимание на его существование во времени. Что это вообще такое - время? Очевидный ответ: количественная характеристика потока происходящих

Парадоксы морали Автономная мораль с ее претензией на абсолютность неизбежно оборачивается парадоксальностью. Обладая изначальностью по отношению к сознательной (целесообразной) человеческой деятельности и будучи тем самым, ее пределом, мораль не может обнаружиться

III. Кантовская критика способности суждения. Парадоксы схематизируются в антиномии В нашем анализе <Салоны> Дидро представляли стихию просвещенного вкуса и были тем <образом культуры> века Просвещения, который м стремились понять.<Критика способности суждения>

ПАРАДОКСЫ «...Истина все же скорее возникает из ошибки, чем из спутанности...» Ф. Бэкон «Логические парадоксы озадачили с момента своего открытия и, вероятно, будут озадачивать нас всегда. Мы должны, я думаю, рассматривать их не столько как проблемы, ожидающие решения,

ПАРАДОКСЫ И ХИТРЕЦЫ В Древней Греции пользовался большой популярностью рассказ о крокодиле и матери. Крокодил выхватил у женщины, стоявшей на берегу реки, ее ребенка. На ее мольбу вернуть ребенка крокодил, пролив, как всегда, крокодилову слезу, ответил: - Твое несчастье

Парадоксы сознания Можно допустить, что все люди обладают сознанием, но это вовсе не означает, что все они отдают себе в этом отчет. Вся эта сфера не предполагает полной однородности. Мы не знаем, как рождается и возникает сознание, мы также не знаем, каковы его связи с

2.4. Парадоксы исторического творчества Вернемся теперь к проблемам обособления экономической власти от политической. Справедливо указывают на то, что, совершив данное разделение, Европа получила в свои руки фактор развития невиданной мощи. Индивидный тип бытия означает

ПАРАДОКСЫ ДЕМОКРАТИИ Американский образец демократии, сформировавшийся в XVIII–XIX веках, фактически представлял демократию меньшинства, типичным носителем которой выступал белый, протестант, домовладелец. Так называемое политическое участие - претензия быть

Предисловие «Парадоксы аннотирования» Вещь – странная штука. Она кажется нам определенной, раз и навсегда данной – какой-нибудь стул, кирпич, лист писчей бумаги. Обычные, понятные вещи, никакой двусмысленности. И все-таки…Вы можете видеть в этой, такой понятной вам вещи

ПАРАДОКСЫ НЕТОЧНОСТИ Говорят, главное во всяком деле - уловить момент. Это относится, пожалуй, и к таким делам, как размышление и рассуждение. Однако здесь «момент» улавливается особенно трудно, и существенную роль в этом играют как раз неточные понятия.- Один мальчик

Глава 7 ПАРАДОКСЫ И ЛОГИКА «КОРОЛЬ ЛОГИЧЕСКИХ ПАРАДОКСОВ» Наиболее известным и, пожалуй, самым интересным из всех логических парадоксов является парадокс «лжеца». Он-то главным образом и прославил имя открывшего его упоминавшегося уже Евбулида из Милета.Имеется много

Логические тупики (Парадоксы)

От софизмов следует отличать логические парадоксы (от греч. paradoxes – «неожиданный, странный»). Парадокс в широком смысле слова – это нечто необычное и удивительное, то, что расходится с привычными ожиданиями, здравым смыслом и жизненным опытом. Логический парадокс – это такая необычная и удивительная ситуация, когда два противоречащих суждения не только являются одновременно истинными (что невозможно в силу логических законов противоречия и исключенного третьего), но еще и вытекают друг из друга, друг друга обуславливают. Если софизм – это всегда какая-либо уловка, преднамеренная логическая ошибка, которую можно обнаружить, разоблачить и устранить, то парадокс представляет собой неразрешимую ситуацию, своего рода мыслительный тупик, «камень преткновения» в логике: за всю ее историю было предложено множество разнообразных способов преодоления и устранения парадоксов, однако ни один из них до сих пор не является исчерпывающим, окончательным и общепризнанным.

Наиболее известный логический парадокс – это парадокс «лжеца». Часто его называют «королем логических парадоксов». Он был открыт еще в Древней Греции. По преданию, философ Диодор Кронос дал обет не принимать пищи до тех пор, пока не разрешит этот парадокс и умер от голода, так ничего и не добившись; а другой мыслитель – Филет Косский впал в отчаяние от невозможности найти решение парадокса «лжеца» и покончил с собой, бросившись со скалы в море. Существует несколько различных формулировок данного парадокса. Наиболее коротко и просто он формулируется в ситуации, когда человек произносит простую фразу: Я лжец. Анализ этого элементарного и бесхитростного на первый взгляд высказывания приводит к ошеломляющему результату. Как известно, любое высказывание (в том числе и вышеприведенное) может быть истинным или ложным. Рассмотрим последовательно оба случая, в первом из которых это высказывание является истинным, а во втором – ложным.

Допустим, что фраза Я лжец истинна, т. е. человек, который произнес ее, сказал правду, но в этом случае он действительно лжец, следовательно, произнеся данную фразу, он солгал. Теперь предположим, что фраза Я лжец ложна, т. е. человек, который произнес ее, солгал, но в этом случае он не лжец, а правдолюб, следовательно, произнеся данную фразу, он сказал правду. Получается нечто удивительное и даже невозможное: если человек сказал правду, то он солгал; а если он солгал, то он сказал правду (два противоречащих суждения не только одновременно истинны, но и вытекают друг из друга).

Другой известный логический парадокс, обнаруженный в начале XX века английским логиком и философом

Бертраном Расселом, – это парадокс «деревенского парикмахера». Представим себе, что в некой деревне есть только один парикмахер, бреющий тех ее жителей, которые не бреются сами. Анализ этой незамысловатой ситуации приводит к необыкновенному выводу. Зададимся вопросом: может ли деревенский парикмахер брить самого себя? Рассмотрим оба варианта, в первом из которых он сам себя бреет, а во втором – не бреет.

Допустим, что деревенский парикмахер сам себя бреет, но тогда он относится к тем жителям деревни, которые бреются сами и которых не бреет парикмахер, следовательно, в этом случае, он сам себя не бреет. Теперь предположим, что деревенский парикмахер сам себя не бреет, но тогда он относится к тем жителям деревни, которые не бреются сами и которых бреет парикмахер, следовательно, в этом случае он сам себя бреет. Как видим, получается невероятное: если деревенский парикмахер сам себя бреет, то он сам себя не бреет; а если он сам себя не бреет, то он сам себя бреет (два противоречащих суждения являются одновременно истинными и взаимообуславливают друг друга).

Парадоксы «лжеца» и «деревенского парикмахера» вместе с другими подобными им парадоксами также называют антиномиями (от греч. antinomia – «противоречие в законе»), т. е. рассуждениями, в которых доказывается, что два высказывания, отрицающие друг друга, вытекают одно из другого. Считается, что антиномии представляют собой наиболее крайнюю форму парадоксов. Однако довольно часто термины «логический парадокс» и «антиномия» рассматриваются как синонимы.

Менее удивительную формулировку, но не меньшую известность, чем парадоксы «лжеца» и «деревенского парикмахера», имеет парадокс «Протагор и Эватл», появившийся, как и «лжец», еще в Древней Греции. В его основе лежит незатейливая на первый взгляд история, которая заключается в том, что у софиста Протагора был ученик Эватл, бравший у него уроки логики и риторики

(в данном случае – политического и судебного красноречия). Учитель и ученик договорились, что Эватл заплатит Протагору гонорар за обучение только в том случае, если выиграет свой первый судебный процесс. Однако по завершении обучения Эватл не стал участвовать ни в одном процессе и денег учителю, разумеется, не платил. Протагор пригрозил ему, что подаст на него в суд и тогда Эватлу в любом случае придется заплатить. «Тебя или присудят к уплате гонорара, или не присудят, – сказал ему Протагор, – если тебя присудят к уплате, ты должен будешь заплатить по приговору суда; если же тебя не присудят к уплате, то ты, как выигравший свой первый судебный процесс, должен будешь заплатить по нашему уговору». На это Эватл ему ответил: «Все правильно: меня или присудят к уплате гонорара, или не присудят; если меня присудят к уплате, то я, как проигравший свой первый судебный процесс, не заплачу по нашему уговору; если же меня не присудят к уплате, то я не заплачу по приговору суда». Таким образом, вопрос о том, должен Эватл заплатить Протагору гонорар или нет, является неразрешимым. Договор учителя и ученика, несмотря на его вполне невинный внешний вид, является внутренне, или логически, противоречивым, так как он требует выполнения невозможного действия: Эватл должен и заплатить за обучение, и не заплатить одновременно. В силу этого сам договор между Протагором и Эватлом, а также вопрос об их тяжбе представляет собой не что иное, как логический парадокс.

Отдельной группой парадоксов являются апории (от греч. aporia – «затруднение, недоумение») – рассуждения, которые показывают противоречия между тем, что мы воспринимаем органами чувств (видим, слышим, осязаем и т. п.), и тем, что можно мысленно проанализировать (проще говоря – противоречия между видимым и мыслимым). Наиболее известные апории выдвинул древнегреческий философ Зенон Элейский, который утверждал, что движение, наблюдаемое нами повсюду, невозможно сделать предметом мысленного анализа, т. е. движение можно видеть, но нельзя мыслить. Одна из его апорий называется «Дихотомия» (греч. dihotomia – «деление пополам»). Допустим, некоему телу надо пройти из пункта А в пункт В. Нет никакого сомнения в том, что мы можем увидеть, как тело, покинув один пункт, через какое-то время достигнет другого. Однако давайте не будем доверять своим глазам, которые говорят нам о том, что тело движется, и попытаемся воспринять движение не глазами, а мыслью, постараемся не увидеть его, а помыслить. В этом случае у нас получится следующее. Прежде чем пройти весь свой путь из пункта А в пункт В, телу надо пройти половину этого пути, ведь если оно не пройдет половину пути, то, конечно же, не пройдет и весь путь. Но прежде чем тело пройдет половину пути, ему надо пройти 1/4 часть пути. Однако до того, как оно пройдет эту 1/4 часть пути, ему надо пройти 1/8 часть пути; а еще раньше ему требуется пройти 1/16 часть пути, а перед этим – 1/32 часть, а прежде того – 1/64 часть, а до этого – 1/128 часть и так до бесконечности. Значит, чтобы пройти из пункта A в пункт В, телу надо пройти бесконечное количество отрезков этого пути. Возможно ли пройти бесконечность? Невозможно! Следовательно, тело никогда не сможет пройти свой путь. Таким образом, глаза свидетельствуют, что путь будет пройден, а мысль, наоборот, отрицает это (видимое противоречит мыслимому).

Другая известная апория Зенона Элейского – «Ахиллес и черепаха» – говорит о том, что мы вполне можем увидеть, как быстроногий Ахиллес догоняет и перегоняет медленно ползущую впереди него черепаху; однако мысленный анализ приводит нас к необычному заключению, что Ахиллес никогда не сможет догнать черепаху, хотя он и движется в 10 раз быстрее нее. Когда он преодолеет расстояние до черепахи, то она за это же время (ведь она тоже движется) пройдет в 10 раз меньше (так как движется в 10 раз медленнее), а именно 1/10 часть того пути, который прошел Ахиллес, и на эту 1/10 часть будет впереди него.

Когда Ахиллес пройдет эту 1/10 часть пути, то черепаха за это же время пройдет в 10 раз меньшее расстояние, т. е. 1/100 часть пути и на эту 1/100 часть будет впереди Ахиллеса. Когда он пройдет 1/100 часть пути, разделяющую его и черепаху, то она за это же время пройдет 1/1000 часть пути, все равно оставаясь впереди Ахиллеса, и так до бесконечности. Итак, мы вновь убеждаемся в том, что глаза говорят нам об одном, а мысль – о совершенно другом (видимое отрицается мыслимым).

Еще одна апория Зенона – «Стрела» – предлагает нам мысленно рассмотреть полет стрелы из одной точки пространства в другую. Наши глаза, конечно же, говорят о том, что стрела летит, или движется. Однако что будет, если мы попытаемся, отвлекаясь от зрительного впечатления, помыслить ее полет? Для этого зададим себе простой вопрос: где сейчас находится летящая стрела? Если, отвечая на данный вопрос, мы скажем, например, Она сейчас здесь, или Она сейчас тут, или Она сейчас там, то все эти ответы будут означать не полет стрелы, а как раз ее неподвижность, ведь находиться здесь, или тут, или там – означает именно покоиться, а не двигаться. Как же нам ответить на вопрос – где сейчас находится летящая стрела – таким образом, чтобы в ответе отразился ее полет, а не неподвижность? Единственно возможный в данном случае ответ должен быть таким: Она сейчас везде и нигде. Но разве возможно быть везде и нигде одновременно? Итак, при попытке помыслить полет стрелы мы натолкнулись на логическое противоречие, на нелепость – стрела находится везде и нигде. Получается, что движение стрелы вполне можно увидеть, но его нельзя помыслить, вследствие чего оно невозможно, как и любое движение вообще. Иначе говоря, двигаться, с точки зрения мысли, а не чувственных восприятий, означает – быть в некоем месте и не быть в нем одновременно, что, конечно же, невозможно.

В своих апориях Зенон столкнул на «очной ставке» данные органов чувств (говорящих о множественности, делимости и движении всего существующего, уверяющих нас, что быстроногий Ахиллес догонит медлительную черепаху, а стрела долетит до цели) и умозрение (которое не может помыслить движение или множественность объектов мира, не впадая при этом в противоречие).

Однажды, когда Зенон доказывал при стечении народа немыслимость и невозможность движения, среди его слушателей оказался не менее известный в Древней Греции философ Диоген Синопский. Ничего не говоря, он встал и начал расхаживать, полагая, что этим он лучше всяких слов доказывает реальность движения. Однако Зенон не растерялся и ответил: «Ты не ходи и руками-то не маши, а попробуй разумом разрешить сию сложную проблему». По поводу этой ситуации есть даже следующее стихотворение А. С. Пушкина:

Движенья нет, сказал мудрец брадатый,

Другой смолчал и стал пред ним ходить.

Сильнее бы не мог он возразить;

Хвалили все ответ замысловатый.

Но, господа, забавный случай сей

Другой пример на память мне приводит:

Ведь каждый день пред нами Солнце ходит,

Однако ж прав упрямый Галилей.

И действительно, видим же мы совершенно отчетливо, что Солнце движется по небу каждый день с востока на запад, а на самом-то деле оно неподвижно (по отношению к Земле). Так почему бы нам не предположить, что и другие объекты, которые мы видим движущимися, на самом деле могут быть неподвижными, и не спешить с утверждением о том, что элейский мыслитель был неправ?

Как уже отмечалось, в логике было создано много способов разрешения и преодоления парадоксов. Однако ни один из них не лишен возражений и не является общепризнанным. Рассмотрение этих способов – долгая и утомительная теоретическая процедура, которая остается в данном случае за пределами нашего внимания. Любознательный читатель сможет познакомиться с разнообразными подходами к решению проблемы логических парадоксов по дополнительной литературе. Логические парадоксы представляют собой свидетельство в пользу того, что логика, как, впрочем, и любая другая наука, является не завершенной, а постоянно развивающейся. По всей видимости, парадоксы указывают на какие-то глубокие проблемы логической теории, приоткрывают завесу над чем-то еще не вполне известным и понятным, намечают новые горизонты в развитии логики.

В примерах № 4, 5,6 используется один и тот же прием: в одинаковых словах смешиваются различные значения, ситуации, темы, одна из которых не равна другой, то есть нарушается закон тождества.

2. Логические парадоксы

Парадокс (от греч. неожиданный, странный) – это нечто необычное и удивительное, то, что расходится с привычными ожиданиями, здравым смыслом и жизненным опытом.

Логический парадокс – это такая необычная и удивительная ситуация, когда два противоречащих суждения не только являются одновременно истинными (что невозможно в силу логических законов противоречия и исключенного третьего), но еще и вытекают друг из друга, друг друга обуславливают.

Парадокс представляет собой неразрешимую ситуацию, своего рода мыслительный тупик, «камень преткновения» в логике: за всю ее историю было предложено множество разнообразных способов преодоления и устранения парадоксов, однако ни один из них до сих пор не является исчерпывающим, окончательным и общепризнанным.

Некоторые парадоксы (парадоксы «лжеца», «деревенского парикмахера» и т.п.) также называют антиномиями (от греч. противоречие в законе), то есть рассуждениями, в которых доказывается, что два высказывания, отрицающие друг друга, вытекают одно из другого. Считается, что антиномии представляют собой наиболее резкую форму парадоксов. Однако довольно часто термины «логический парадокс» и «антиномия» рассматриваются как синонимы.

Отдельной группой парадоксов являются апории (от греч. – затруднение, недоумение) – рассуждения, которые показывают противоречия между тем, что мы воспринимаем органами чувств (видим, слышим, осязаем и т.п.), и тем, что можно мысленно проанализировать (противоречия между видимым и мыслимым).

Наиболее известные апории выдвинул древнегреческий философ Зенон Элейский, который утверждал, что движение, наблюдаемое нами повсюду, невозможно сделать предметом мысленного анализа. Одна из его известных апорий называется «Ахиллес и черепаха». Она говорит о том, что мы вполне можем увидеть, как быстроногий Ахиллес догоняет и перегоняет медленно ползущею черепаху; однако мысленный анализ приводит нас к необычному заключению, что Ахиллес никогда не сможет догнать черепаху, хотя он движется в 10 раз быстрее нее. Когда он преодолеет расстояние до черепахи, то она за это же время пройдет в 10 раз меньше, а именно 1/10 часть того пути, который прошел Ахиллес, и на эту 1/10 часть будет впереди него. Когда Ахиллес пройдет эту 1/10 часть пути, то черепаха за это же время пройдет в 10 раз меньшее расстояние, то есть 1/100 часть пути, и на эту 1/100 часть будет впереди Ахиллеса. Когда он пройдет 1/100 часть пути, разделяющую его и черепаху, то она за это же время пройдет 1/1000 часть пути, все равно оставаясь впереди Ахиллеса, и так до бесконечности. Мы убеждаемся в том, что глаза говорят нам одно, а мысль – совершенно другое (видимое отрицается мыслимым).

В логике было создано много способов разрешения и преодоления парадоксов. Однако ни один из них не лишен возражений и не является общепризнанным.

2.1 Примеры логических парадоксов

Наиболее известный логический парадокс – это парадокс «лжеца». Часто его называют «королем логических парадоксов». Он был открыт еще в Древней Греции. По преданию, философ Диодор Кронос дал обет не принимать пищи до тех пор, пока не рзрешит этот парадокс и умер от голода, так ничего и не добившись. Существует несколько различных формулировок данного парадокса. Наиболее коротко и просто он формулируется в ситуации, когда человек произносит простую фразу: «Я лжец». Анализ этого высказывания приводит к ошеломляющему результату. Как известно, любое высказывание может быть истинным или ложным. Допустим, что фраза «Я лжец» истинна, то есть человек, который произнес ее, сказал правду, но в этом случае он действительно лжец, следовательно, произнеся данную фразу, он солгал. Допустим, что фраза «Я лжец» ложна, то есть человек, который произнес ее, солгал, но в этом случае он не лжец, а правдолюб, следовательно, произнеся данную фразу, он сказал правду. Получается нечто удивительное и даже невозможное: если человек сказал правду, то он солгал; а если он солгал, то он сказал правду (два противоречащих суждения не только одновременно истины, но и вытекают друг из друга).

Другой известный логический парадокс, обнаруженный в XX в. английским логиком и философом Бертраном Расселом, – это парадокс «деревенского парикмахера». Представим, что в некой деревне есть только один парикмахер, бреющий тех ее жителей, которые не бреются сами. Анализ этой незамысловатой ситуации приводит к необыкновенному выводу. Зададимся вопросом: может ли деревенский парикмахер брить самого себя? Допустим, что деревенский парикмахер сам себя бреет, но тогда он относится к тем жителям деревни, которые бреются сами и которых не бреет парикмахер, следовательно, в этом случае он сам себя не бреет. Допустим, что деревенский парикмахер сам себя не бреет, но тогда он относится к тем жителям деревни, которые не бреются сами и которых бреет парикмахер, следовательно, в этом случае он сам себя бреет. Получается невероятное: если деревенский парикмахер сам себя бреет, то он сам себя не бреет; а если он сам себя не бреет, то он сам себя бреет (два противоречащих суждения являются одновременно истинными и взаимообусловливают друг друга).

Парадокс «Протагор и Эватл» появился в Древней Греции. В его основе лежит незатейливая на первый взгляд история, которая заключается в том, что у софиста Протагора был ученик Эватл, бравший у него уроки логики и риторики. Учитель и ученик договорились таким образом, что Эватл заплатит Протагору гонорар за обучение только в том случае, если выиграет свой первый судебный процесс. Однако по завершении обучения Эватл не стал участвовать ни в одном процессе и денег учителю, разумеется, не платил. Протагор пригрозил ему, что подаст на него в суд и тогда Эватлу в любом случае придется заплатить. «Тебя или присудят к уплате гонорара, или не присудят, –сказал ему Протагор, – если тебя присудят к уплате, ты должен будешь заплатить по приговору суда; если же тебя не присудят к уплате, то ты, как выигравший свой первый судебный процесс, должен будешь заплатить по нашему уговору». На это Эватл ему ответил: «Все правильно: меня или присудят к уплате гонорара, или не присудят; если меня присудят к уплате, то я, как проигравший свой первый судебный процесс, не заплачу по нашему уговору; если же меня не присудят к уплате, то я не заплачу по приговору суда». Таким образом, вопрос о том, должен Эватл заплатить Протагору или нет, является неразрешимым. Договор учителя и ученика, несмотря на его вполне невинный внешний вид, является внутренне, или логически, противоречивым, так как он требует выполнения невозможного действия: Эватл должен и заплатить за обучение, и не заплатить одновременно. В силу этого сам договор между Протагором и Эватлом, а также вопрос об их тяжбе представляет собой нечто иное, как логический парадокс.

Задание 2

Определите структуру, вид суждения, сделайте символическую отношения между терминами, указав их распределенность:

«У отдельных людей есть высокие интеллектуальные способности»

  1. Структура суждения:

1) Субъект – «высокие интелектуальные способности»

2) Предикат – « у отдельных людей»

3) Связка выражена

4)Кванторное слово « Есть» (выражено)

Частоутвердительные некоторые S есть Р

QS есть Р

2. Суждение общее по количеству и утвердительное по качеству

3. В явной логической форме: «Высокие интелектуальные способности есть у отдельных людей».

4. Формула: Все S есть Р. Суждение – А.

5. Р

7. Субъект распределен, предикат не распределен.

10 -

«Нет такого человека, который не любил бы подарки».

  1. Структура суждения:

1) Субъект – «Подарки»

2) Предикат – «Человек»

3) Связка выражена – который не любил бы

4)Кванторное слово « Все» (не выражено)

2. Суждение общее по количеству и общеотрицательное по качеству

3. В явной логической форме: «Подарки любят все люди».

4. Формула: Ни одно S не есть Р. Суждение – Е. общеотрицательное

5. Р

6. Термины находятся в отношении – подчинение.

7. Субъект распределен, предикат не распределен

11 -

Задание 3

Определите вид умозаключения, сделайте вывод, постройте схему вывода, установите логическую состоятельность рассуждения:

«Лицо, совершившее преступление небольшой тяжести впервые может быть освобождено от уголовной ответственности, если оно раскаялось или примирилось с потерпевшим. Иванов настроен или раскаяться или примириться с потерпевшим, значит…».

Иванов настроен или раскаяться или примириться с потерпевшим, значит в случае, если он впервые совершил преступление небольшой тяжести, он может быть освобожден от уголовной ответственности.

1. Вид суждений в посылках:

1 –я посылка: «Лицо, совершившее преступление небольшой тяжести впервые может быть освобождено от уголовной ответственности, если оно раскаялось или примирилось с потерпевшим. Иванов настроен или раскаяться или примириться с потерпевшим ». – импликативносоединительное суждение, состоящее из двух импликаций, объединенных конъюкцией.

p – лицо может быть освобождено от уголовной ответственности

g – оно раскаялось в содеянном или оно примерилось с потерпевшим

q – оно не раскаялось и не примерилось

2 –я посылка: «Лицо либо раскается и примерится с потерпевшим, либо нет». – разделительное суждение, состоящее из 2 – х альтернатив.

2.Схема умозаклучения:

(p→g) Λ (¬p→q)

p V ¬p________________

g V q

3. Простая конструктивная дилемма

4. Вывод: « Лицо, совершившее преступление небольшой тяжести либо будет освобождено, либо нет » .

5.Список литературы

1) Гетманова А.Д. Учебник по логике. М.: Владос, 1994.

2) Гусев Д.А. Учебное пособие по логике для вузов. Москва: Юнити-Дана, 2004

3) Ивин А.А. Искусство правильно мыслить. М.: Просвещение, 1990.

4) Коваль С. От развлечения к знаниям /Пер. О. Унгурян. Варшава: Начно-техническое изд-во, 1972.

Если в результате прочтения этой подборки вы не запутаетесь полностью, значит вы мыслите недостаточно ясно.
Учёные и мыслители с давних времён любят развлекать себя и коллег постановкой неразрешимых задач и формулированием разного рода парадоксов. Некоторые из подобных мысленных экспериментов сохраняют актуальность на протяжении тысяч лет, что свидетельствует о несовершенстве многих популярных научных моделей и «дырах» в общепринятых теориях, давно считающихся фундаментальными. Предлагаем вам поразмыслить над наиболее интересными и удивительными парадоксами, которые, как сейчас выражаются, «взорвали мозг» не одному поколению логиков, философов и математиков.
Апория «Ахиллес и черепаха»
Парадокс Ахиллеса и черепахи - одна из апорий (логически верных, но противоречивых высказываний), сформулированных древнегреческим философом Зеноном Элейским в V-м веке до нашей эры. Суть её в следующем: легендарный герой Ахиллес решил посоревноваться в беге с черепахой. Как известно, черепахи не отличаются прыткостью, поэтому Ахиллес дал сопернику фору в 500 м. Когда черепаха преодолевает эту дистанцию, герой пускается в погоню со скоростью в 10 раз большей, то есть пока черепаха ползёт 50 м, Ахиллес успевает пробежать данные ей 500 м форы. Затем бегун преодолевает следующие 50 м, но черепаха в это время отползает ещё на 5 м, кажется, что Ахиллес вот-вот её догонит, однако соперница всё ещё впереди и пока он бежит 5 м, ей удаётся продвинуться ещё на полметра и так далее. Дистанция между ними бесконечно сокращается, но по идее, герою так и не удаётся догнать медлительную черепаху, она ненамного, но всегда опережает его.


Конечно, с точки зрения физики парадокс не имеет смысла - если Ахиллес движется намного быстрее, он в любом случае вырвется вперёд, однако Зенон, в первую очередь, хотел продемонстрировать своими рассуждениями, что идеализированные математические понятия «точка пространства» и «момент времени» не слишком подходят для корректного применения к реальному движению. Апория выявляет расхождение между математически обоснованной идеей, что ненулевые интервалы пространства и времени можно делить бесконечно (поэтому черепаха должна всегда оставаться впереди) и реальностью, в которой герой, конечно, выигрывает гонку.
Парадокс временной петли
Парадоксы, описывающие путешествия во времени, давно служат источником вдохновения для писателей-фантастов и создателей научно-фантастических фильмов и сериалов. Существует несколько вариантов парадоксов временной петли, один из самых простых и наглядных примеров подобной проблемы привёл в своей книге «The New Time Travelers» («Новые путешественники во времени») Дэвид Туми, профессор из Университета Массачусетса.
Представьте себе, что путешественник во времени купил в книжном магазине экземпляр шекспировского «Гамлета». Затем он отправился в Англию времён Королевы-девы Елизаветы I и отыскав Уильяма Шекспира, вручил ему книгу. Тот переписал её и издал, как собственное сочинение. Проходят сотни лет, «Гамлета» переводят на десятки языков, бесконечно переиздают, и одна из копий оказывается в том самом книжном магазине, где путешественник во времени покупает её и отдаёт Шекспиру, а тот снимает копию и так далее… Кого в таком случае нужно считать автором бессмертной трагедии?
Парадокс девочки и мальчика
В теории вероятностей этот парадокс также называют «Дети мистера Смита» или «Проблемы миссис Смит». Впервые он был сформулирован американским математиком Мартином Гарднером в одном из номеров журнала «Scientific American». Учёные спорят над парадоксом уже несколько десятилетий и существует несколько способов его разрешения. Поразмыслив над проблемой, вы можете предложить и свой собственный вариант.
В семье есть двое детей и точно известно, что один из них - мальчик. Какова вероятность того, что второй ребёнок тоже имеет мужской пол? На первый взгляд, ответ вполне очевиден - 50 на 50, либо он действительно мальчик, либо девочка, шансы должны быть равными. Проблема в том, что для двухдетных семей существует четыре возможных комбинации полов детей - две девочки, два мальчика, старший мальчик и младшая девочка и наоборот - девочка старшего возраста и мальчик младшего. Первую можно исключить, так как один из детей совершенно точно мальчик, но в таком случае остаются три возможных варианта, а не два и вероятность того, что второе чадо тоже мальчик - один шанс из трёх.
Парадокс Журдена с карточкой
Проблему, предложенную британским логиком и математиком Филиппом Журденом в начале XX-го века, можно считать одной из разновидностей знаменитого парадокса лжеца.
Представьте себе - вы держите в руках открытку, на которой написано: «Утверждение на обратной стороне открытки истинно». Перевернув открытку, вы обнаруживаете фразу «Утверждение на другой стороне ложно». Как вы понимаете, противоречие налицо: если первое утверждение правдиво, то второе тоже соответствует действительности, но в таком случае первое должно оказаться ложным. Если же первая сторона открытки лжива, то фразу на второй также нельзя считать истинной, а это значит, первое утверждение опять-таки становится правдой… Ещё более интересный вариант парадокса лжеца - в следующем пункте.
Софизм «Крокодил»
На берегу реки стоят мать с ребёнком, вдруг к ним подплывает крокодил и затаскивает ребёнка в воду. Безутешная мать просит вернуть её чадо, на что крокодил отвечает, что согласен отдать его целым и невредимым, если женщина правильно ответит на его вопрос: «Вернёт ли он её ребёнка?». Понятно, что у женщины два варианта ответа - да или нет. Если она утверждает, что крокодил отдаст ей ребёнка, то всё зависит от животного - посчитав ответ правдой, похититель отпустит ребёнка, если же он скажет, что мать ошиблась, то ребёнка ей не видать, согласно всем правилам договора.
Отрицательный ответ женщины всё значительно усложняет - если он оказывается верным, похититель должен выполнить условия сделки и отпустить дитя, но таким образом ответ матери не будет соответствовать действительности. Чтобы обеспечить лживость такого ответа, крокодилу нужно вернуть ребёнка матери, но это противоречит договору, ведь её ошибка должна оставить чадо у крокодила.
Стоит отметить, что сделка, предложенная крокодилом, содержит логическое противоречие, поэтому его обещание невыполнимо. Автором этого классического софизма считается оратор, мыслитель и политический деятель Коракс Сиракузский, живший в V-м веке до нашей эры.
Апория «Дихотомия»


Ещё один парадокс от Зенона Элейского, демонстрирующий некорректность идеализированной математической модели движения. Проблему можно поставить так - скажем, вы задались целью пройти какую-нибудь улицу вашего города от начала и до конца. Для этого вам необходимо преодолеть первую её половину, затем половину оставшейся половины, далее половину следующего отрезка и так далее. Иначе говоря - вы проходите половину всего расстояния, затем четверть, одну восьмую, одну шестнадцатую - количество уменьшающихся отрезков пути стремится к бесконечности, так как любую оставшуюся часть можно разделить надвое, значит пройти весь путь целиком невозможно. Формулируя несколько надуманный на первый взгляд парадокс, Зенон хотел показать, что математические законы противоречат реальности, ведь на самом деле вы можете без труда пройти всё расстояние без остатка.
Апория «Летящая стрела»
Знаменитый парадокс Зенона Элейского затрагивает глубочайшие противоречия в представлениях учёных о природе движения и времени. Апория сформулирована так: стрела, выпущенная из лука, остаётся неподвижной, так как в любой момент времени она покоится, не совершая перемещения. Если в каждый момент времени стрела покоится, значит она всегда находится в состоянии покоя и не движется вообще, так как нет момента времени, в который стрела перемещается в пространстве.


Выдающиеся умы человечества веками пытаются разрешить парадокс летящей стрелы, однако с логической точки зрения он составлен абсолютно верно. Для его опровержения требуется объяснить, каким образом конечный временной отрезок может состоять из бесконечного числа моментов времени - доказать это не удалось даже Аристотелю, убедительно критиковавшему апорию Зенона. Аристотель справедливо указывал, что отрезок времени нельзя считать суммой неких неделимых изолированных моментов, однако многие учёные считают, что его подход не отличается глубиной и не опровергает наличие парадокса. Стоит отметить, что постановкой проблемы летящей стрелы Зенон стремился не опровергнуть возможность движения, как таковую, а выявить противоречия в идеалистических математических концепциях.
Парадокс Галилея
В своём труде «Беседы и математические доказательства, касающиеся двух новых отраслей науки» Галилео Галилей предложил парадокс, демонстрирующий любопытные свойства бесконечных множеств. Учёный сформулировал два противоречащих друг другу суждения. Первое: есть числа, представляющие собой квадраты других целых чисел, например 1, 9, 16, 25, 36 и так далее. Существуют и другие числа, у которых нет этого свойства - 2, 3, 5, 6, 7, 8, 10 и тому подобные. Таким образом, общее количество точных квадратов и обычных чисел должно быть больше, чем количество только точных квадратов. Второе суждение: для каждого натурального числа найдётся его точный квадрат, а для каждого квадрата существует целый квадратный корень, то есть, количество квадратов равно количеству натуральных чисел.
На основании этого противоречия Галилей сделал вывод, что рассуждения о количестве элементов применены только к конечным множествам, хотя позже математики ввели понятие мощности множества - с его помощью была доказана верность второго суждения Галилея и для бесконечных множеств.
Парадокс мешка картофеля


Допустим, у некоего фермера имеется мешок картофеля весом ровно 100 кг. Изучив его содержимое, фермер обнаруживает, что мешок хранился в сырости - 99% его массы составляет вода и 1% остальные вещества, содержащиеся в картофеле. Он решает немного высушить картофель, чтобы содержание воды в нём снизилось до 98% и переносит мешок в сухое место. На следующий день оказывается, что, один литр (1 кг) воды действительно испарился, но вес мешка уменьшился со 100 до 50 кг, как такое может быть? Давайте посчитаем - 99% от 100 кг это 99 кг, значит соотношение массы сухого остатка и массы воды изначально было равно 1/99. После сушки вода насчитывает 98% от общей массы мешка, значит соотношение массы сухого остатка к массе воды теперь составляет 1/49. Так как масса остатка не изменилась, оставшаяся вода весит 49 кг.
Конечно, внимательный читатель сразу обнаружит грубейшую математическую ошибку в расчётах - мнимый шуточный «парадокс мешка картофеля» можно считать отличным примером того, как с помощью на первый взгляд «логичных» и «научно подкреплённых» рассуждений можно буквально на пустом месте выстроить теорию, противоречащую здравому смыслу.
Парадокс воронов
Проблема также известна, как парадокс Гемпеля - второе название она получила в честь немецкого математика Карла Густава Гемпеля, автора её классического варианта. Проблема формулируется довольно просто: каждый ворон имеет чёрный цвет. Из этого следует, что всё, что не чёрного цвета, не может быть вороном. Этот закон называется логическая контрапозиция, то есть если некая посылка «А» имеет следствие «Б», то отрицание «Б» равнозначно отрицанию «А». Если человек видит чёрного ворона, это укрепляет его уверенность, что все вороны имеют чёрный окрас, что вполне логично, однако в соответствии с контрапозицией и принципом индукции, закономерно утверждать, что наблюдение предметов не чёрного цвета (скажем, красных яблок) также доказывает, что все вороны окрашены в чёрный цвет. Иными словами - то, что человек живёт в Санкт-Петербурге доказывает, что он живёт не в Москве.
С точки зрения логики парадокс выглядит безукоризненно, однако он противоречит реальной жизни - красные яблоки никоим образом не могут подтверждать тот факт, что все вороны чёрного цвета.

Есть такая наука, она называется логикой, которая учит, как нужно рассуждать, чтобы наше мышление было определенным, связным, последовательным, доказательным и непротиворечивым. Как человек, не знающий правил арифметики и грамматики, не знающий правил логики, не может без ошибок рассуждать и действовать.

Человеку, занимающемуся математикой, очень часто приходится определять понятия, выяснять связи между ними, рассматривать, на какие группы (виды) могут быть подразделены фигуры, числа, уравнения функции. Но особенно часто в математике приходится путем рассуждений выводить разнообразные формулы, правила и доказывать теоремы. Не случайно находились такие математики, которые думали, что математика – это наука «о производстве необходимых умозаключений». Такой взгляд на математику односторонен, но верно то, что без логики не может быть математики. А это значит, что для успешного изучения математики надо настойчиво учиться правильно рассуждать. Это значит также, что само изучение математики очень полезно для овладения правилами и законами мышления. Не без оснований называют иногда математику «оселком для ума».

Логика – абстрактная наука. В ней нет экспериментов, нет даже фактов в обычном смысле этого слова. Строя свои системы, логика исходит в конечном счете из анализа реального мышления. Но результаты этого анализа носят синтетический характер. Они не являются констатациями каких-либо отдельных процессов или событий, которые должна была бы объяснить теория. Такой анализ нельзя назвать наблюдением: наблюдается всегда конкретное явление.

Исследование всевозможных логических цепочек (силлогизмов) привело к обнаружению знаменитых парадоксов и софизмов. Парадокс – ситуация, когда в теории доказываются два взаимно исключающие друг друга суждения, причем каждое из этих суждений выведено убедительными с точки зрения данной теории средствами.

Простой категорический силлогизм – рассуждение, состоящее из трёх простых атрибутивных высказываний: двух посылок и одного заключения. Посылки силлогизма разделяются на большую (которая содержит предикат заключения) и меньшую (которая содержит субъект заключения).

Пример силлогизма:

Всякий человек смертен (большая посылка)

Сократ – человек (меньшая посылка)

Сократ смертен (заключение)

Цель работы: в этой работе я продолжу развивать мысль своей прошлой работы. Я рассмотрю более подробно софизмы, познакомлю вас с логическими цепочками и с великим человекам, открывшие нам их законы. Изучу несколько новых парадоксов. А также опровергну или найду подтверждения своей гипотезе.

Гипотеза: при решении софизмов и парадоксов используется логика.

Логика ведет своё происхождение от ораторского искусства. Убедить собеседника невозможно, если оратор сам себе противоречит (уж если ты сказал, что снег белый, не следует ссылаться на его черноту). В Древней Греции, где важнейшие вопросы решались на советах, всякий уважающий себя философ, политический деятель или литератор старался строить речь так, чтобы она была доходчива и разумна. В античном мире чрезвычайно ценилось умение высказываться точно, кратко и остроумно.

Любовь к точной фразе привела древнегреческих философов к логике. Что из чего следует и почему? Можно ли, например, утверждать, что Сократ смертен, если дано, что все люди смертны и Сократ человек? Можно. А если дано, что все люди смертны и Сократ тоже смертен, верно ли, что Сократ человек? Неверно: вдруг Сократом зовут не только греческого мудреца, но и, скажем, его собаку?

Законы логики, правила вывода верных утверждений из заданных посылок наиболее полно исследовал великий древнегреческий философ Аристотель.

АРИСТОТЕЛЬ (384-322 до н. э.)

В 366 году до нашей эры в Академии Платона появился новый ученик. Он был родом из Стагира, и было ему 18 лет. Ученика звали Аристотель.

Почти 20 лет провел Аристотель в Академии. Из ученика он превратился в мудреца-философа, соперничавшего в знаниях и глубокомыслии с самим Платоном. Это соперничество подчас становилось весьма острым, но ни разу научные споры Платона с Аристотелем не переросли в личную вражду.

Вскоре после смерти Платона Аристотель покинул Академию. Македонский царь Филипп пригласил его воспитывать царевича Александра. В 335г. до н. э. Аристотель вернулся из Македонии в Афины, где основал собственную школу. Её название – Ликей – вошло впоследствии в латинский и во многие другие языки, изменившись на одну букву: лицей.

Вслед за Платоном, Аристотель считал, что достоверное знание может и должно быть выведено из исходных, несомненных истин – аксиом – при помощи логических рассуждений. Но Аристотель пошел дальше Платона: он описал законы логики, которые позволяют переходить от одного истинного суждения к другому без риска совершить ошибку.

Вот несколько законов, сформулированных Аристотелем. Сякое суждение либо истинно, либо ложно. Ни одно суждение не может быть истинным и ложным одновременно. Из общих утверждений следуют частные (например, из того, что все люди смертны, следует, что Сократ тоже смертен). В течение многих веков научный авторитет Аристотеля был непререкаем.

«ИЛИ», «И», «ЕСЛИ» И «НЕ»

Всякое высказывание может быть истинным или ложным. Третий вариант трудно себе представить, поэтому древнегреческие философы и пользовались «принципом исключенного третьего» - считали, что не может утверждение быть и не истинным, и не ложным. Вслед за ними так считаем и мы. Логика без принципа «исключенного третьего» упоминается разве лишь в фантастических романах, да и то в шутку

А теперь попробуем собрать одно высказывание из двух частей. Как мы часто это делаем, соединим две фразы словечком «или». «В углу шуршит мышь или крокодил». Верно ли это высказывание? Зависит от того, кто на самом деле шуршит в углу. Если это и вправду мышь, фраза верна. Если (как ни трудно себе такое представить) это крокодил, опять же высказывание верно. Если в углу дружно шуршат мышь с крокодилом, она верна снова! И лишь если в углу нет ни мыши, ни крокодила, а шуршит сбежавший из клетки хомяк, высказывание оказывается ложным. Это – свойство, присущее именно «или»: два утверждения, связанные этим словом, составляют верное высказывание, если хотя бы одно из утверждений справедливо, и ложное, если оба утверждения неверны. А теперь составим маленькую табличку (здесь И – «истинное утверждение», Л – «ложное»):

И или И = И,

И или Л = И,

Л или И = И.

Л или Л = Л.

Сравним теперь, как себя ведет связка «и». Разберем пример: «Мимо окна летят воробей и летающая тарелка». Если за окном нет ни воробья, ни тарелки, это высказывание ложно. Если воробей есть, а тарелки нет – оно все равно ложно. Если есть тарелка, но нет воробья – то же самое. И лишь одновременное присутствие обоих означает. Что фраза истинна. Вот таблица истинности для словечка «и»:

Фраза, связанная этим словом, верна в том единственном случае, когда верна в том единственном случае, когда верны обе части!

В этом тексте несколько раз употреблялась конструкция фразы «если так, то будет эдак». Посмотрим, когда верно утверждение такого типа? Оно верно, если верна первая часть (посылка) и одновременно верна вторая (заключение). Оно неверно, если верна посылка, но неверен вывод: несомненно ложным является высказывание «если разбить чашку, то будет землетрясение». А если посылка неверна? Может показаться невероятным, но в этом случае высказывание истинно. Из ложной посылки следует что угодно! На самом деле ничего удивительного в этом нет: вам самим случалось, и не раз, употреблять фразы вроде «если 2х2=5, то я папа римский». Попробуйте доказать, что такое утверждение ложно! Оно означает лишь, что 2х2 не равно пяти, и вы не папа римский, следовательно, оно истинно. Получим такую таблицу истинности:

«И» и «или» - это элементарные действия логики, так же как сложение и умножение – это действия арифметики. Между логическими и арифметическими операциями есть некоторое сходство, и сейчас мы его продемонстрируем. Пусть у нас только две цифры, 0 и 1. Будем обозначать истину единицей, а ложь – нулем. Тогда наша табличка истинности для «или» напоминает таблицу двоичного сложения: 0+0=0; 1+0=1; 0+1=1, и только для «сложения» двух истин (1+1=1) мы получим не тот ответ, который дает нам двоичная арифметика (там 1+1=10), но по большому счету он не слишком сильно отличается от арифметического, ибо нуля мы не получим все равно. Результат же логического умножения – «и» - полностью совпадает с арифметическим: 0х0=0, 1х0=0, 0х1=0, 1х1=1.

Аналога операции «если» на первый взгляд в арифметике нет. Но если ввести ещё одно логическое действие, не рассмотренное нами подробно – «не», отрицание, устроенное чрезвычайно просто (не истина есть ложь, не ложь есть истина, т. е. в чистом виде закон исключенного третьего), - оказывается, можно выразить «если» через «или», «и» и «не». Самом деле, конструкция «А и В, или не А» ведет себя точно так же, как «если А, то В». Если А истинно, то не А ложно, и истинность всего высказывания зависит от истинности В; если же А ложно, то не А истинно, и независимо от истинности или ложности В высказывание будет верным.

Мы не зря упомянули здесь арифметическую аналогию логических операций. Поскольку можно (с некоторыми поправками) выразить цифрами и арифметическими знаками истинность или ложность высказываний, то можно научить логике вычислительную машину. Ей будут доступны все логические рассуждения, сколь угодно сложные – нужно лишь выразить их через «и», «или» и «не».

ПАРАДОКСЫ.

Парадокс (от греческого para – протии и doxa – мнение) – противоречивое высказывание.

В широком смысле парадокс – неочевидное высказывание, истинность которого устанавливается трудно; в этом смысле парадоксальными принято называть любые неожиданные противоречивые высказывания, особенно если неожиданность их смысла выражена в остроумной форме.

В математике парадокс – ситуация, когда в данной теории доказываются два взаимоисключающих суждения, причем каждое из этих суждений выведено убедительными с точки зрения данной теории средствами, т. е. парадокс – высказывание, которое в данной теории равным образом может быть доказано и как истина, и как ложь.

Парадоксы, как правило, свидетельствуют о недостатках рассматриваемой теории, о её внутренней противоречивости. В науке очень часто обнаружение парадокса в рамках данной теории приводило к существенной перестройке всей теории и служило стимулом для дальнейших более глубоких исследований. В математике анализ парадоксов способствовал как пересмотру взглядов на проблему обоснования, так и развитию многих современных идей и методов. Этими вопросами занимается наука, называемая математической логикой.

СОБАКА И ЗАЯЦ

На охоте собака погналась за зайцем, находившимся от неё на расстоянии 100 сажен, но не догнала его. Охотники были весьма огорчены подобной неудачей, но вот один из них и говорит: «Эх, господа, стоит ли расстраиваться из-за такого пустяка? Да и стоит ли вообще гонять собак за зайцами? Всё равно собака его никогда догнать не сможет, даже в том случае, если побежит со скоростью в 10 раз большею. »

Как так?! – изумились охотники. – Что за вздор?

Какой там вздор, господа! Вовсе не вздор! И я вас уверяю, что всегда так будет!

Ну, что за чепуха! - сказали слушавшие. – Объясните, пожалуйста, как это может случиться?

А вот как1 Положим, например, что собаку вначале отделяет от зайца расстояние в 100 сажен. Если даже собака будет бежать в 10 раз скорее зайца, то когда она пробежит эти 100 сажен, заяц успеет пробежать ещё 10 сажен. Когда собака пробежит и эти 10 сажен, заяц пробежит ещё 1 сажень, и все-таки будет впереди собаки; когда собака пробежит и эту сажень, то заяц пробежит снова 1/10 сажени и т. д. Таким образом, заяц всегда будет впереди собаки, хотя бы на небольшое расстояние. Следовательно, собака никогда не догонит зайца. Этот парадокс известен очень давно и носит название «парадокс Зенона об Ахиллесе и черепахе».

КУЧА ПЕСКА

Два приятеля однажды вели такой разговор. «Видишь кучу песка?» - спросил первый. «Я-то её вижу, - ответил второй, - но её нет на самом деле». Первый удивился: «Почему?» -Очень просто,- ответил второй. - Давай рассудим: одна песчинка, очевидно, не образует кучи песка. Если n песчинок не могут образовать кучи песка, то и после прибавления ещё одной песчинки они по-прежнему не могут образовать кучи. Следовательно, никакое число песчинок не образует кучи, т. е. кучи песка нет. Этот парадокс носит название «парадокс кучи».

ПАРАДОКС «ЛЖЕЦ»

Наиболее известным и самым интересным из всех логических парадоксов является парадокс «Лжец». «Я – лжец» - говорит некто и впадает в неразрешимое противоречие! Ведь если он действительно лжец, он солгал, говоря, что он лжец, и, следовательно, он не лжец; но если он не лжец, он сказал правду и, следовательно, он лжец.

Парадокс «Лжец» произвел громадное впечатление на греков. И легко понять почему. Вопрос, который в нем ставится, с первого взгляда кажется совсем простым: лжет ли тот, кто говорит только то, что он лжет? Но ответ «да» приводит к ответу «нет», и наоборот. И размышление ничуть не проясняет ситуацию. За простотой и даже обыденностью вопроса оно открывает какую-то неясную и неизмеримую глубину.

Ходит даже легенда, что некий Филлит Косский, отчаявшись разрешить этот парадокс, покончил с собой. Говорят также, что один из известных древнегреческих логиков, Диодор Кронос, уже на склоне лет дал обет не принимать пищу до тех пор, пока не найдет решение «Лжеца», и вскоре умер, так ничего и не добившись.

Софизмом называется умышленное умозаключение, которое имеет видимость правильного. Каков бы ни был софизм, он обязательно содержит одну или несколько замаскированных ошибок. Особенно часто в математических софизмах выполняются «запрещенные» действия или не учитываются условия применимости теорем, формул и правил. Иногда рассуждения ведутся с использованием ошибочного чертежа или опираются на приводящие к ошибочным заключениям «очевидности». Встречаются софизмы, содержащие и другие ошибки.

В истории развития математики софизмы играли существенную роль. Они способствовали повышению строгости математических рассуждений и содействовали более глубокому уяснению понятий и методов математики.

Чем же полезны софизмы для изучающих математику?

Разбор софизмов прежде всего развивает логическое мышление, т. е. прививает навыки правильного мышления. Обнаружить ошибку в софизме – это значит осознать её, а осознание ошибки предупреждает от повторения её в других математических рассуждениях.

Разбор софизмов помогает сознательному усвоению изучаемого математического материала, развивает наблюдательность, вдумчивость и критическое отношение к тому, что изучается. Математические софизмы приучают внимательно и настороженно продвигаться вперед, тщательно следить за точностью формулировок, правильностью записей и чертежей, за допустимостью обобщений, за законностью выполняемых операций.

Наконец, разбор софизмов увлекателен. Только очень сухого человека не может увлечь интересный софизм. Как приятно бывает обнаружить ошибку в математическом софизме и тем как бы восстановить истину в её правах. Рассмотрим некоторые софизмы.

СОФИЗМ «РОГАТЫЙ»

То, что ты не потерял, ты имеешь; ты не потерял рога, следовательно, ты их имеешь.

Ошибка здесь состоит в неправильном переходе от общего правила к частному случаю, который этим правилом не предусмотрен. Действительно, начало первой фразы: «То, что ты не потерял» подразумевает под словом «то» - всё, что ты имеешь, и ясно, что в него не включены «рога». Поэтому заключение «ты имеешь рога» неправомерно.

РАВЕН ЛИ ПОЛНЫЙ СТАКАН ПУСТОМУ?

Оказывается, что да. Действительно, проведем следующее рассуждение. Пусть имеется стакан, наполненный водой до половины. Тогда можно написать, что стакан, наполовину полный равен стакану, наполовину пустому. Увеличивая обе части равенства вдвое, получим, что стакан полный равен стакану пустому.

Ясно, что приведенное рассуждение неверно, так как в нем применяется неправомерное действие: увеличение вдвое. В данной ситуации его применение бессмысленно.

ПОСЛЕДНИЕ ГОДЫ НАШЕЙ ЖИЗНИ КОРОЧЕ, ЧЕМ ПЕРВЫЕ.

Известно старое изречение: в молодости время идёт медленнее, а в старости скорее. Это изречение можно доказать математически. Действительно, человек в течение тридцатого года проживает 1/30 часть своей жизни, в течение сорокового года – 1/40 часть, в течение пятидесятого – 1/50 часть, в течение шестидесятого – 1/60 часть. Совершенно очевидно, что

1/30>1/40>1/50>1/60, откуда ясно, что последние годы нашей жизни короче первых.

Не подвела ли математика?

Действительно, верно, что 1/30>1/40>1/50>1/60. Но неверно утверждение, что в течение тридцатого года человек проживает 1/30 часть своей жизни, он проживает 1/30 только той части жизни, которую он к этому моменту прожил, но именно части, а не всей жизни. Нельзя сравнивать между собой части различных отрезков времени.

ДВАЖДЫ ДВА РАВНО ПЯТИ.

Напишем тождество 4:4=5:5. Вынеся их каждой части тождества общие множители за скобки, получаем: 4∙ (1:1) = 5∙ (1:1) или (2 ∙2) ∙ (1:1) = 5∙ (1:1).

Так как 1:1=1, то 2∙2=5.

Ошибка сделана при вынесении общих множителей 4 из левой части и 5 из правой части. Действительно, 4:4=1:1, но 4:4 ≠ 4∙(1:1).

ЛЮБОЕ ЧИСЛО РАВНО НУЛЮ.

Пусть a – любое фиксированное число. Рассмотрим уравнение 3х2-3ах+а2=0. Перепишем его следующим образом: 3х2-3ах=-а2. Умножая обе части его на –а, получим уравнение -3х2а+3а2х=а3. Прибавляя к обеим частям этого уравнения х3-а3, получаем уравнение х3-3ах2+3а2х-а3=х3 или (х-а)3=х3, откуда х-а=х, т. е. а=0.

При а≠0 не существует числа х, удовлетворяющего уравнению 3х2-3ах+а2=0. Это следует из того, что дискриминант этого квадратного уравнения D= -3а2

В ходе работы моя гипотеза подтвердилась: софизмы и парадоксы строятся исключительно по законам логики.

Рассмотренные парадоксы и софизмы – это только часть из всех обнаруженных к настоящему времени. Вполне вероятно, что в будущем откроют и многие другие парадоксы, и даже совершенно новые их типы.

С течением времени отношение к парадоксам стало более спокойным и даже более терпимым, чем в момент их обнаружения. Дело не только в том, что парадоксы сделались чем-то привычным. И не в том, что с ними смирились. Поиски их решений активно продолжаются. Ситуация изменилась прежде всего потому, что парадоксы оказались локализованными. Они обрели своё определенное место в широком спектре логических исследований. Стало ясно, что абсолютная строгость – это в принципе недостижимый идеал.

О многом шла речь в этой работе. Ещё больше интересных и важных тем осталось за её пределами. Логика – это особый, самобытный мир со своими законами, условностями, традициями, спорами. То, о чем говорит эта наука, знакомо и близко каждому. Но войти в её мир, почувствовать его внутреннюю согласованность и динамику, проникнуться его своеобразным духом непросто.



просмотров